
Truncated Counterfactual Learning for Anytime Multi-Agent Path Finding

Thomy Phan1, Shao-Hung Chan2, Sven Koenig3,4

1University of Bayreuth, Germany
2University of Southern California, USA

3University of California, Irvine, USA
4Örebro University, Sweden

thomy.phan@uni-bayreuth.de, shaohung@usc.edu, sven.koenig@uci.edu

Abstract
Anytime multi-agent path finding (MAPF) is a promising
approach to scalable and collision-free path optimization in
multi-agent systems. MAPF-LNS, based on Large Neighbor-
hood Search (LNS), is the current state-of-the-art approach
where a fast initial solution is iteratively optimized by de-
stroying and repairing selected paths, i.e., a neighborhood, of
the solution. Delay-based MAPF-LNS has demonstrated par-
ticular effectiveness in generating promising neighborhoods
via seed agents, according to their delays. Seed agents are se-
lected using handcrafted strategies or online learning, where
the former relies on human intuition about underlying struc-
tures, while the latter conducts black-box optimization, ignor-
ing any structure. In this paper, we propose Truncated Adap-
tive Counterfactual K-ranked LEarning (TACKLE) to select
seed agents via informed online learning by leveraging hand-
crafted strategies as human intuition. We show theoretically
that TACKLE dominates its handcrafted and black-box learn-
ing counterparts in the limit. Our experiments demonstrate
cost improvements of at least 60% in instances with one thou-
sand agents, compared with state-of-the-art anytime solvers.

Code — github.com/thomyphan/counterfactual-mapf-lns

1 Introduction
A wide range of real-world applications, like goods trans-
portation in warehouses, search and rescue missions, and
traffic management, can be formulated as a Multi-Agent Path
Finding (MAPF) problem, where the goal is to find collision-
free paths for multiple agents with assigned start and goal
locations. Finding optimal solutions, w.r.t. minimal flowtime
or makespan, is NP-hard, which limits the scalability of most
state-of-the-art MAPF solvers (Ratner and Warmuth 1986;
Sharon et al. 2012; Yu and LaValle 2013).

Anytime MAPF based on Large Neighborhood Search
(LNS) is a promising approach to finding fast and high-
quality solutions to the MAPF problem within a fixed time
budget (Li et al. 2021). Given an initial feasible solution and
a set of destroy heuristics, LNS iteratively destroys and re-
plans a fixed number of paths, i.e., a neighborhood, until
the time budget runs out. MAPF-LNS represents the current
state-of-the-art in anytime MAPF and has been experimen-
tally shown to scale up to scenarios with hundreds of agents

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Intent

(a) Observational

Intervention

(b) Interventional

Intent

Intervention

(c) Counterfactual

Figure 1: Causal graphs for delay-based MAPF-LNS with
an unobserved confounder U , seed agent A, neighborhood
paths B, and payoff C based on (Pearl 2010). In each model,
blue nodes denote observable variables. Dashed lines illus-
trate the influence of the unobserved variable U , and solid
lines illustrate the influence of observable variables. (a) Ob-
servational/intent selection via U . (b) Interventional seed
agent selection via policy π. (c) Counterfactual seed agent
selection via π conditioned on the pre-selection of (a).

(Li et al. 2021). Due to its increasing popularity, several ex-
tensions have been proposed, such as fast local repair, inte-
gration of primal heuristics, learning mechanisms, and par-
allelism (Chan et al. 2024; Huang et al. 2022; Jiang et al.
2024; Lam et al. 2023; Li et al. 2022; Phan et al. 2024b).

Delay-based MAPF-LNS has demonstrated particular ef-
fectiveness in large-scale scenarios with many agents (Phan
et al. 2025; Tan et al. 2025), where LNS neighborhoods are
generated via seed agents according to their delays. The seed
agent selection is important for the resulting solution qual-
ity and is commonly based on handcrafted strategies or on-
line learning (Li et al. 2021; Phan et al. 2025; Tan et al.
2025). While the former relies on human intuition about un-
derlying structures (Fig. 1a), the latter optimizes the selec-
tion in a black-box fashion, ignoring any structure (Fig. 1b).
However, despite impressive results reported by the latter,
no strategy dominates the other in general (Nozick 1969).

In this paper, we propose Truncated Adaptive Counter-
factual K-ranked LEarning (TACKLE) using causal multi-
armed bandits with unobserved confounders (MABUC) for
delay-based MAPF-LNS. Our contributions are as follows:

• We formulate a causal model for seed agent selection in
delay-based MAPF-LNS and use counterfactual learning

(Fig. 1c) with a truncated and non-stationary MABUC.
• We show theoretically that TACKLE dominates the ef-

fectiveness of its handcrafted and black-box learning
counterparts in the limit.

• We empirically evaluate TACKLE in well-known bench-
mark maps (Stern et al. 2019) and demonstrate cost im-
provements of at least 60% in instances with one thou-
sand agents, compared with state-of-the-art solvers.

While our paper focuses on MAPF, TACKLE can also be
adjusted for other problem classes, where variables can be
sorted by their contribution to the total cost in order to gen-
erate LNS neighborhoods (Pisinger and Ropke 2019).

2 Background
2.1 Multi-Agent Path Finding (MAPF)
We focus on maps as undirected, unweighted graphs G =
⟨V, E⟩, where vertex set V contains all possible locations and
edge set E contains all possible transitions or movements
between adjacent locations. An instance I consists of a map
G and a set of agents A = {a1, ..., am} with each agent ai
having a start location si ∈ V and a goal location gi ∈ V .
At every time step t, all agents can move along the edges in
E or wait at their current location (Stern et al. 2019).

MAPF aims to find a collision-free plan for all agents.
A plan P = {p1, ..., pm} consists of individual paths
pi = ⟨pi,0, ..., pi,l(pi)⟩ per agent ai, where ⟨pi,t, pi,t+1⟩ =
⟨pi,t+1, pi,t⟩ ∈ E , pi,0 = si, pi,l(pi) = gi, and l(pi) is the
length or travel distance of path pi. The delay del(pi) of
path pi is defined by the difference of path length l(pi) and
the length of the shortest path from si to gi w.r.t. map G.

In this paper, we consider vertex conflicts ⟨ai, aj , v, t⟩ that
occur when two agents ai and aj occupy the same location
v ∈ V at time step t and edge conflicts ⟨ai, aj , u, v, t⟩ that
occur when two agents ai and aj traverse the same edge
⟨u, v⟩ ∈ E in opposite directions at time step t (Stern et al.
2019). A plan P is a solution, i.e., feasible when it has no
vertex or edge conflicts. Our goal is to find a feasible so-
lution by minimizing the flowtime

∑
p∈P l(p) equivalent to

minimizing the sum of delays or (total) cost SoC(P) =∑
p∈P del(p). In the context of anytime MAPF, we also con-

sider the Area Under the Curve (AUC) as a measure of how
quickly we approach the quality of our final solution.

2.2 Anytime MAPF with LNS
Anytime MAPF searches for solutions within a given time
budget. The solution quality improves monotonically with
increasing time budget (Cohen et al. 2018; Li et al. 2021).

MAPF-LNS, based on Large Neighborhood Search (LNS),
is the current state-of-the-art approach to anytime MAPF
and has been shown to scale up to large-scale scenarios with
hundreds of agents (Huang et al. 2022). Starting with an ini-
tial feasible plan P , e.g., found via prioritized planning (PP)
from (Silver 2005), MAPF-LNS iteratively modifies P by
destroying up to n < m paths, i.e., a neighborhood B ⊂ P .
The destroyed paths B are repaired or replanned using PP
to quickly generate new paths B′. If the new cost SoC(B′)
is lower than the previous cost SoC(B), then P is replaced

Interventional Seed Agents

Intents

1

2

Figure 2: Counterfactual table as a cross of intent and inter-
ventional seed agents a and a′. Each cell stores the estimated
counterfactual payoff E

[
Ca′ |a

]
. The MABUC (1) queries

the intent agent a by selecting a row before (2) making a de-
cision on the row entry a′ as the actual seed agent (red).

by (P\B)∪B′, and the search continues until the time bud-
get runs out. The result of MAPF-LNS is the last accepted
solution P , with the lowest cost so far.

Since the number of possible neighborhoods scales ex-
ponentially w.r.t. m for n > 1 (Huang et al. 2022), MAPF-
LNS employs multiple destroy heuristics to select promising
neighborhoods B whose modifications have a high potential
C of reducing the cost of the solution P (Li et al. 2021).

2.3 Delay-Based Anytime MAPF-LNS
We focus on delay-based destroy heuristics, which are em-
pirically the most effective in common benchmark maps (Li
et al. 2021; Phan et al. 2025; Tan et al. 2025). The idea is
to select a seed agent A = aj ∈ A, whose path pj ∈ P
has a high potential to be shortened, indicated by its delay
del(pj). A random walk is performed from a random posi-
tion in pj to collect up to n− 1 other agents ai whose paths
pi are crossed by the random walk, indicating their contri-
bution to del(pj), to determine a neighborhood B ⊂ P of
size |B| ≤ n < m for the LNS destroy-and-repair proce-
dure. The seed agent selection scales linearly w.r.t. m and is
important for reducing the cost (Fig. 1) (Phan et al. 2025).

2.4 Bandits with Unobserved Confounders
Multi-armed Bandits (MAB) MABs or bandits are basic
decision-making problems with a set of choices A = a ∈ A
(e.g., seed agents) and a stochastic payoff function X (a) :=
Ca, where Ca is a random variable with an unknown dis-
tribution. The goal is to determine a choice a′ that maxi-
mizes the expected payoff E

[
Ca′] ∈ [0, 1] (e.g., potential

to reduce costs). The MAB has to balance between trying
out choices to estimate the payoffs accurately and exploit-
ing its knowledge by greedily selecting the choice with the
highest payoff estimate. This is known as the exploration-
exploitation dilemma, where exploration can lead to higher
payoffs but is time-consuming, while exploitation can con-
verge faster but possibly gets stuck in a local optimum. Our
work focuses on Thompson Sampling (Thompson 1933).

MABs with Unobserved Confounders (MABUC) We
assume a Structural Causal Model (SCM) (Pearl 2010) as-
sociated with a directed acyclic graph M (Fig. 1), a set
of endogenous (observed) variables W, and a set of ex-
ogenous (unobserved) variables U. Edges in M represent
functional relationships between endogenous variables, i.e.,

wi ← fi(PAi, ui) ∈W, where PAi ⊆W \ {wi} and ui ⊆ U
with probability P(ui). Given two endogenous variables A
and C, we define the counterfactual expression c = Ca,
meaning “C would be c if A had been a” (Bareinboim, For-
ney, and Pearl 2015; Forney, Pearl, and Bareinboim 2017).

A MABUC is a generalized MAB, where for each trial,
an intent a ∈ A ⊂ W is naturally triggered by some unob-
served confounder U = u ⊆ U, as shown in Fig. 1a. Based
on the intent, a counterfactual policy π selects a choice
A = a′ = π(a), as shown in Fig. 1c. The goal is to find
a choice A = a′ maximizing the expected counterfactual
payoff E

[
Ca′ |a

]
given an intent a caused by u ∈ U (Fig. 2).

Alternatives are observational selection (Fig. 1a), i.e., the
intent A = a = f(u), and interventional selection (Fig. 1b),
where A = a′ is chosen by a policy independent of U = u.

The expected payoffs of committing to an observational,
interventional, or counterfactual choice A, according to Fig.
1 and 2, are defined by JObs, J Inv, and JCtf, respectively:

JObs =
∑
a∈A

P(a)E[Ca|a] (1)

J Inv = maxa′∈A

{
E[Ca′

]
}
= maxa′∈A

{∑
a∈A

P(a)E[Ca′
|a]

}
(2)

JCtf =
∑
a∈A

P(a)maxa′∈A

{
E[Ca′

|a]
}

(3)

where P(a) = P(f(u)) = P(u) denotes the observational
distribution induced by U = u. In heuristic search, P(a) can
represent handcrafted strategies, i.e., human intuition about
U (Phan, Chan et al. 2025). When JObs ̸= J Inv, then unob-
served confounders exist, such that U ̸= ∅, justifying coun-
terfactual learning (Bareinboim, Forney, and Pearl 2015).

3 Related Work
3.1 Multi-Armed Bandits for LNS
In recent years, MABs have been used to tune learning and
optimization algorithms on the fly (Badia et al. 2020; Hen-
del 2022; Schaul et al. 2019). UCB1 and ϵ-Greedy are com-
monly used for LNS destroy heuristic selection in traveling
salesman problems (TSP), mixed integer linear program-
ming (MILP), and vehicle routing problems (VRP) (Chen
et al. 2016; Hendel 2022). Some bandit-based MAPF-LNS
variants have been proposed to adapt the neighborhood size
n, e.g., BALANCE (Phan et al. 2024b), or the seed agent
choice A, e.g., ADDRESS (Phan et al. 2025).

Since classic black-box MAB learning (Fig. 1b) does not
dominate handcrafted strategies in general (Fig. 3), we use
counterfactual learning (Fig. 1c) via truncated MABUCs.

3.2 Machine Learning in Anytime MAPF
Machine learning has been used in MAPF to directly learn
collision-free path finding or to guide the node selection in
search trees (Alkazzi and Okumura 2024; Huang, Dilkina,
and Koenig 2021; Phan et al. 2024a; Phan, Phan, and Koenig
2025; Sartoretti et al. 2019). (Huang et al. 2022; Yan and Wu

Model Expected Payoff per Seed Agent Choice
Observational E[Ca|a] = EP(B=b|A=a)[C

a|b, a]
Interventional E[Ca′

] =
∑

a P(a)EP(B=b|A=a′)[C
a′
|b, a]

Counterfactual E[Ca′
|a] = EP(B=b|A=a′)[C

a′
|b, a]

Table 1: Different seed agent selection models w.r.t. Fig. 1.

2024) propose machine learning-guided variants of MAPF-
LNS, where neighborhoods are generated via destroy heuris-
tics (Li et al. 2021). The neighborhoods are then selected
using an offline-trained model. Such methods cannot adapt
during the search and require extensive prior efforts like data
acquisition, model training, and feature engineering.

We focus on online learning in MAPF-LNS. Our ap-
proach can adjust via binary payoff signals on the fly, in-
dicating a successful or failed cost improvement. Instead of
acquiring data and engineering features, we leverage exist-
ing handcrafted strategies for informed online learning.

4 Counterfactual Learning in MAPF-LNS
We now introduce Truncated Adaptive Counterfactual K-
ranked Learning and Evolution (TACKLE) as a counterfac-
tual learning approach to delay-based MAPF-LNS. Inspired
by causal reasoning, e.g., (Bareinboim, Forney, and Pearl
2015), TACKLE first queries a handcrafted heuristic, e.g.,
from (Li et al. 2021; Tan et al. 2025), as a proxy for human
intuition, to select an observational candidate. If the candi-
date belongs to the top-K set of the most delayed agents, a
counterfactual table is queried to sample a seed agent, ac-
cording to Fig. 2. Otherwise, the observational candidate
directly serves as the seed agent for delay-based MAPF. If
the time budget for planning were infinite, setting K = m
would converge to the best result. However, we assume an
anytime setting, where the time budget is restricted. There-
fore, we adopt the top-K truncation, suggested in (Phan
et al. 2025). Fig. 4 provides an overview of TACKLE.

4.1 Causal Models for Seed Agent Selection
Based on the dependencies in delay-based MAPF-LNS, we
can formulate a causal graph M (Fig. 1) as follows: We
define a variable U , which represents all implicit structural
properties and aspects of the current solution P , such as the
map, start and goal locations, current paths, agent priorities,
etc. The seed agent is represented by decision variable A,
which may depend on U w.r.t. the selection model. The gen-
erated LNS neighborhood is represented by variable B de-
pending on A to enable a selection with linear complexity
w.r.t. the agent count m (Section 2.3). Variable C represents
the cost improvement and depends on variables B and U .

In the following, we discuss common seed agent selec-
tion models and how they relate to our causal graphM. The
corresponding expected payoffs are listed in Table 11.

1For completeness, we also include B in the notation despite
manipulating B only indirectly via A for tractability (Section 2.3).
The condition a = f(u) is an observable proxy of u ∼ P(u)
(Section 2.4) w.r.t. the back-door criterion in Fig. 1a (Pearl 2010).

Observational Selection is based on human intuition or
knowledge about U (Fig. 1a) using handcrafted strate-
gies or imitation learning (Huang et al. 2022). In delay-
based MAPF, observational methods select seed agents via
Roulette Wheel sampling proportional to their delays (Tan
et al. 2025) or just greedily using Tabu Lists (Li et al. 2021).
We define P(aj) = del(pj)∑

q∈P del(q) based on Roulette Wheel.

Interventional Selection ignores U and uses black-box
strategies, such as classic MABs explained in Section 2.4
(Fig. 1b). Thompson Sampling, as used in ADDRESS, out-
performs observational selection in most benchmark maps,
by optimizing E[Ca′

] over a′ ∈ A (Phan et al. 2025).

Algorithm 1: TACKLE for Delay-Based MAPF-LNS

1: procedure TACKLE(I,K,P)
2: Aold

K ← ∅
3: P = {p1, ..., pm} ← RunInitialSolver(I)
4: while runtime limit not exceeded do
5: a ∼ P(a) ▷ Query intent/observational choice
6: Select the top-K set AK ⊆ A w.r.t. the delays
7: if orderedList(AK) ̸= orderedList(Aold

K) then
8: ⟨αa

i , β
a
i ⟩ ← ⟨1, 1⟩ for all table entries

9: Aold
K ← AK ▷ Adapt to non-stationarity

10: end if
11: if a ∈ AK then
12: for agent ai in AK do
13: qi ∼ Beta(αa

i , β
a
i)

14: end for
15: j ← argmaxiqi ▷ Max. chance to improve
16: else
17: Use index of the intent a as j
18: end if
19: B ∼ RandomWalkNeighborhood(I, P, aj)
20: B′ ← DestroyAndRepair(I, P,B)
21: if SoC(B)− SoC(B′) > 0 then
22: P ← (P\B) ∪B′ ▷ Replace solution
23: αa

j ← αa
j + 1 ▷ Success update (if a ∈ AK)

24: else
25: βa

j ← βa
j + 1 ▷ Failure update (if a ∈ AK)

26: end if
27: end while
28: return P
29: end procedure

4.2 MABUC for Seed Agent Selection
Observational and interventional selection are common in
delay-based MAPF-LNS, but in general, no strategy domi-
nates the other w.r.t. JObs and J Inv, as illustrated in Fig. 3
(Nozick 1969). Counterfactual learning always converges to
the maximum JCtf = 1 (Eq. 3), and provably dominates both
common strategies (Bareinboim, Forney, and Pearl 2015).

For counterfactual learning via MABUCs in delay-based
MAPF-LNS, we leverage prior handcrafted strategies, e.g.,
Roulette Wheel, to sample an intent seed agent a ∈ A,
i.e., a row in Fig. 2 via P(a). Each row of an intent a rep-
resents a classic Thompson Sampling MAB, where each

Interventions

In
te
nt
s

In
te
nt
s

Interventions

Figure 3: Example 1: Interventional dominates; J Inv = 1 ≥
JObs. Example 2: Observational dominates; JObs ≥ J Inv.

row entry represents an interventional seed agent choice
aj ∈ A. For each choice aj , we maintain two counters,
namely αa

j > 0 for successful and βa
j > 0 for failed cost

improvements, respectively. Both counters represent a Beta
distribution Beta(αa

j , β
a
j), which models the potential of an

agent aj ∈ A to reduce the solution cost as a seed agent,

conditional on intent a. Beta(αa
j , β

a
j) has a mean of

αa
j

αa
j+βa

j

and is initialized with αa
j = 1 and βa

j = 1, i.e., a 50:50 esti-
mated chance of reducing the solution cost (Chapelle and Li
2011).

4.3 TACKLE: Truncation and Non-Stationarity
Despite counterfactual learning eventually converging to op-
timal choices, it has to explore all seed agent candidates
sufficiently to learn accurate payoff estimates. In large-scale
anytime MAPF, where the number of agents m is high and
the time budget for learning is restricted, exhaustive explo-
ration can lead to a poor solution quality (Phan et al. 2025).

Inspired by ADDRESS (Phan et al. 2025), we consider
the top-K set AK ⊆ A of the most delayed agents. If the
sampled intent a /∈ AK is not included in the top-K set, the
TACKLE policy adopts it directly as the actual seed agent
choice A = a without further intervention. We define the
observational coverage RK =

∑
a∈AK

P(a) ∈ [0, 1], de-
pending on K and P(a). The modified expected interven-
tional and counterfactual payoffs J Inv

K (ADDRESS) and JCtf
K

(TACKLE), respectively, are defined by:

J Inv
K = maxa′∈AK

 ∑
a∈AK

P(a)E[Ca′
|a]

+ JObs
Rest (4)

JCtf
K =

∑
a∈AK

P(a)maxa′∈AK

{
E[Ca′

|a]
}
+ JObs

Rest (5)

where JObs
Rest =

∑
b∈A\AK

P(b)E[Cb|b] ≤ (1−RK).
Since AK includes all agents a with the highest observa-

tional probability P(a), we can focus on very few choices
(K ≪ m) in practice to ease exploration (Phan et al. 2025).

With Eq. 4 and 5, we can show that TACKLE dominates
ADDRESS and its underlying observational model P(a).
Theorem 1. Given a stationary observational distribution
P(a) and K ≥ 1, TACKLE eventually converges to a coun-
terfactual policy with an expected payoff JCtf

K that dominates
J Inv
K and JObs (Eq. 1), i.e., JCtf

K ≥ J Inv
K and JCtf

K ≥ JObs.

Proof. Proving JCtf
K ≥ J Inv

K is analogous to JCtf ≥ J Inv,
according to (Bareinboim, Forney, and Pearl 2015). JCtf

K ≥

Seed
Agent
Index

Seed
Agent
Index

Generate Neighborhood B
via Random Walks

Select Row from
Counterfactual

Table (if contained)

(1) Intent Query
 based on Delays

(2) Counterfactual Decision
 based on Intent and Top-K Set

(3) Delay-Based MAPF-LNS
Procedure

Evaluate Cost
Improvement C

Top-K Set of Most
Delayed Agents

j j
Seed Agent
Choice A LNS Operations

Thompson
Sampling

Destroy
and Repair {(Success Update)

(Failure Update)

All Agents
Sorted by Delay

Intent

a

Figure 4: Detailed overview of TACKLE w.r.t. the counterfactual model in Fig. 1c. (1) An intent a ∈ A is queried using an
observational model P(a) based on human intuition, e.g., Roulette Wheel w.r.t. delays. If a ∈ AK , i.e., the top-K set of the
most delayed agents, a row is selected from the truncated K ×K counterfactual table, containing the parameters αa

j , β
a
j > 0

for Thompson Sampling. (2) By sampling qj ∼ Beta(αa
j , β

a
j), a counterfactual seed agent A = aj is selected. If intent a /∈ AK ,

then the seed agent is just A = a. (3) The path of the seed agent A is used to generate an LNS neighborhood B ⊂ P . After
running the LNS destroy-and-repair operations on B, the parameters αa

j or βa
j are updated w.r.t. the cost improvement (C).

JObs can be proven by decomposing JCtf
K into a counterfac-

tual (i.e.,
∑

a∈AK
P(a)maxa′∈AK

{
E[Ca′ |a]

}
) and an ob-

servational (i.e., JObs
Rest) part, where the analogous parts of

JObs (Eq. 1) have either equal or less expected payoffs.

To adapt to non-stationarity, TACKLE can leverage the
top-K truncation. As the effectiveness of our MABUC de-
pends on the underlying solution structure (U), any change
in AK , e.g., a replacement or swapped ordering, would indi-
cate a substantial change in the solution cost and, therefore,
in the solution structure U and distribution P(a). Thus, all
parameters αa

i and βa
i are reset to 1 when AK has changed.

The full formulation of TACKLE is provided in Algo-
rithm 1 and illustrated in Fig. 4, where I represents the in-
stance to be solved, K truncates the seed agent choices, and
P is the observational distribution over intents a ∈ A.

4.4 Conceptual Discussion
TACKLE is a counterfactual approach to delay-based
MAPF-LNS using human intuition for informed online
learning. It can be seen as a generalization of prior delay-
based MAPF-LNS variants, where K = 0 reduces TACKLE
to its observational counterpart, i.e., P(a). Replacing P(a) in
Line 5 of Algorithm 1 with a static deterministic choice or a
distribution that is statistically independent of U , e.g., a ran-
dom uniform distribution Q(a) = 1

m , reduces TACKLE to
its interventional counterpart, i.e., ADDRESS.

While TACKLE dominates its interventional (and trun-
cated) counterpart ADDRESS with a K ×K counterfactual
table, it is not guaranteed to dominate any non-truncated in-
terventional/counterfactual variant with a full m ×m table,
when the optimal2 choice a∗ /∈ AK is not included in the
top-K set. However, in large-scale anytime MAPF, where
m is large and the time budget is restricted, non-truncated
variants often fail to converge to high-quality solutions.

2In the LNS context, optimality refers to the potential of reduc-
ing costs via seed agent a∗. It does not refer to an optimal plan.

TACKLE can serve as a general framework for MAPF-
LNS destroy heuristics that rely on alternative decision vari-
ables, such as locations and visitation counts (Chen et al.
2024; Li et al. 2021). Investigating analogous counterfactual
extensions would be an exciting direction for future work.

TACKLE can also be easily adjusted to other problem
classes, such as TSP, MILP, or VRP, when using so-called
worst or critical destroy heuristics, focusing on high-cost
variables that “spoil” the structure of the solution (Pisinger
and Ropke 2019). We defer such applications to future work.

5 Experiments
Maps We evaluate TACKLE on five maps from the
MAPF benchmark set of (Stern et al. 2019), namely (1) a
Warehouse map (Warehouse-20-40-10-2-2), (2) a City
map (Paris 1 256), (3) two Game maps Ost003d and (4)
Den520d, and (5) a Random map (Random-32-32-20). All
maps have different sizes and structures. We conduct all ex-
periments on all publicly available 25 random scenarios per
map and report the averages and 95% confidence intervals.

Anytime MAPF Solvers Our implementation of
TACKLE is based on the public code of (Li et al. 2022; Phan
et al. 2025). We use the notation TACKLE(X), where X
is an observational strategy as a proxy for human intuition
(Fig. 1a and Section 4.1) with X = Roulette(Wheel)
as the default. We use the original implementations of
MAPF-LNS, ADDRESS (top-K-truncated), BALANCE,
and LaCAM* (Okumura 2023) for comparison.

We always set the maximum neighborhood size to n = 8
(except for BALANCE, which automatically adapts n) and
K = 32 unless stated otherwise. All MAPF-LNS variants
use PP to generate initial solutions and repair LNS neighbor-
hoods, as suggested in (Li et al. 2021; Huang et al. 2022).

Compute Infrastructure All experiments were run on a
high-performance computing cluster with CentOS Linux,
Intel Xeon 2640v4 CPUs, and 64 GB RAM.

Figure 5: Top: Sum of delays for TACKLE with Roulette
Wheel and Tabu List, as well as ADDRESS (as an in-
terventional variant), and Roulette as a standalone delay-
based MAPF-LNS variant for different values of K with
m = 800 agents in both maps, a time budget of 60 sec-
onds. Bottom: The corresponding observational coverages
RK =

∑
a∈AK

P(a) of different K w.r.t. the delays of the
initial solution.

5.1 Experiment – Truncation Parameter K

Setting We run TACKLE with Roulette Wheel and Tabu
List, as well as ADDRESS (Phan et al. 2025), to evalu-
ate different values of K ∈ {8, 16, 32, 64, 128, 256} on the
Warehouse and City maps with m = 800 agents and a
time budget of 60 seconds. The results are compared with
Roulette as a standalone delay-based MAPF-LNS variant.

Results The results are shown in Figure 5.
TACKLE(Roulette) and TACKLE(Tabu) perform simi-
larly, with K = 32 offering a good runtime-quality tradeoff
in most scenarios. ADDRESS is more sensitive w.r.t. K
and only outperforms Roulette Wheel when K ∈ [16, 64]
while performing worst when K ≥ 128. The bottom row of
Figure 5 shows the average observational coverage RK of
different K w.r.t. the delays of the initial solution. In both
maps, intervening on K = 32 seed agent candidates covers
approximately 80% of the observational choices.

Discussion Truncation is useful when the delays are con-
centrated in very few agents, as represented by the top-K set
AK , which is indicated by the average observational cover-
ages RK . Due to the restricted time budget, TACKLE and
ADDRESS are less effective with large K due to more ex-
ploration time – despite higher observational coverage.

5.2 Experiment – Delay-Based MAPF-LNS
Variants

Setting Next, we evaluate the search progress of
TACKLE, as well as ADDRESS, Roulette Wheel, and Tabu
List, for different time budgets on the Warehouse and
City maps with m = 800 agents. The results are compared
with a stationary variant of TACKLE without MABUC re-
sets (skipping Lines 7–10 in Algorithm 1).

TACKLE LaCAM*
Random 2,988.4± 106 10, 146.4± 1399
Ost003d 6,938.4± 567 38, 632± 3925
Den520d 1490.7± 154 33, 604.4± 3823
Warehouse 411.1± 37 70, 107.8± 911
City 1180.8± 117 48, 760.6± 614

Table 2: Average sum of delays of TACKLE and LaCAM*
with 95% confidence intervals, with a time budget of 60 sec-
onds, and the maximum number of agents per map evaluated
in Figure 7. The best performance is highlighted in boldface.

Results The results are shown in Figure 6. Both
TACKLE(Roulette) and TACKLE(Tabu) progress fastest,
with ADDRESS being able to keep up in Warehouse.
The observational variants, Roulette Wheel and Tabu List,
progress notably slower than TACKLE and ADDRESS, in-
dicating the presence of unobserved confounders, according
to Section 2.4. TACKLE(Stationary) performs worst, always
achieving the highest sum of delays and AUC.

Discussion The results confirm empirically that condi-
tioning the seed agent selection on observational choices
can outperform black-box interventions, e.g., ADDRESS,
as well as observational alternatives, e.g., Roulette Wheel
or Tabu List, especially when the time budget is less than
30 seconds. The similar performance of TACKLE(Roulette)
and TACKLE(Tabu) indicates that both delay-based strate-
gies are suitable to serve as observational models for coun-
terfactual learning. Adapting to non-stationarity, e.g., by re-
setting the MABUC, is important as the observational distri-
bution P(a) changes substantially during the search.

5.3 Experiment – State-of-the-Art Comparison
Setting We now compare TACKLE with the original
MAPF-LNS, BALANCE, and LaCAM*. We run all solvers
on the Ost003d, Den520d, Warehouse, and City
maps with different numbers of agents m and a time bud-
get of 60 seconds. We also include Roulette Wheel as a stan-
dalone delay-based MAPF-LNS variant for comparison.

Results The results are shown in Figure 7. TACKLE out-
performs all other approaches. BALANCE and Roulette
Wheel outperform MAPF-LNS. For m = 1000, TACKLE
improves the cost by at least 76% in Warehouse and 60%
in City, compared with the second-best anytime solver for
these maps, i.e., Roulette Wheel. Due to the large perfor-
mance gap, we report the sum of delays for LaCAM* and
TACKLE separately in Table 2 for the maximum number of
agents per map tested in this experiment. TACKLE (and all
other baselines) clearly outperforms LaCAM*.

Discussion Counterfactual learning enables TACKLE to
find promising neighborhoods B more efficiently to reduce
the solution cost by considering the underlying structure U
via the observational model P(a). In contrast, black-box ap-
proaches like the original MAPF-LNS and BALANCE re-
quire a considerable amount of exploration time to select
suitable destroy heuristics, thus being less effective.

(Tabu) Tabu

Figure 6: Sum of delays and AUC for TACKLE and a sta-
tionary variant without MABUC resets (skipping Lines 7–
10 in Algorithm 1) compared with ADDRESS, Roulette
Wheel, Tabu List, as standalone delay-based MAPF-
LNS variants (interventional and observational counter-
parts, according to Section 4.1) for different time budgets
(starting from 15 seconds) with m = 800 agents. Shaded ar-
eas show the 95% confidence interval.

9708
33849822 3392

10.325 4864

7663 6931

1906
3419

1736
3022

411
1181

6938 1491

Figure 7: Sum of delays for TACKLE compared with the
original MAPF-LNS, BALANCE, and Roulette Wheel as
a standalone delay-based MAPF-LNS variant for different
numbers of agents m and a time budget of 60 seconds.
Shaded areas show the 95% confidence interval. The aver-
age sum of delays for the maximum number of agents per
map is displayed on the right of each plot (colored by solver
and sorted by effectiveness). A separate comparison with
LaCAM* is provided in Table 2.

Figure 8: Left: Sum of delays for TACKLE compared with
the original MAPF-LNS, BALANCE, and Roulette Wheel as
a standalone delay-based MAPF-LNS variant for different
numbers of agents m and a time budget of 60 seconds in the
Random map. Shaded areas show the 95% confidence inter-
val. Right: The observational coverage RK =

∑
a∈AK

P(a)
of different K w.r.t. the initial delays for m = 300.

5.4 Experiment – Limitations of TACKLE
Setting Finally, we compare all solvers from Section 5.3
on the Random map with different numbers of agents m
and a time budget of 60 seconds.

Results The results are shown in Figure 8, where
TACKLE does not outperform any baseline. The average ob-
servational coverage RK w.r.t. the initial delays for m =
300 shows that K = 32 covers clearly less than 50%.

Discussion Due to the low observational coverage in the
Random map, TACKLE has less room to dominate its ob-
servational counterpart and black-box MAPF-LNS variants
strictly. While the top-K truncation is useful in large-scale
scenarios, it becomes a limiting factor in small-scale scenar-
ios, as the sorting procedure causes more overhead relative
to its potential to reduce costs (Phan et al. 2025).

6 Conclusion
We presented TACKLE, a counterfactual approach to delay-
based MAPF-LNS. TACKLE is based on a causal model to
select seed agents using human intuition for informed online
learning. TACKLE dominates the effectiveness of its hand-
crafted and black-box learning counterparts in the limit.

Our experiments show that TACKLE significantly outper-
forms state-of-the-art anytime MAPF solvers like the origi-
nal MAPF-LNS, ADDRESS, BALANCE, and LaCAM* in
large-scale scenarios with up to a thousand agents. The ef-
fectiveness of our counterfactual approach is confirmed by
its lower costs and AUC compared with alternative delay-
based MAPF-LNS variants using handcrafted or black-box
learning strategies. TACKLE is most effective in structured
and large-scale scenarios, where a small number of sorted
seed agent candidates offers sufficient observational cover-
age for efficient counterfactual online learning.

In the future, we want to include additional variables in
our causal graphs to provide explanations and predictions
based on data, e.g., about the exact cause of delays. The ex-
tensions can also be used for other destroy heuristics lever-
aging alternative decision variables, e.g., locations and vis-
itation counts (Chen et al. 2024; Li et al. 2021), as well as
other NP-hard problem classes, such as TSP, MILP, or VRP.

Acknowledgments
The research at the University of California, Irvine and
the University of Southern California was supported by the
National Science Foundation (NSF) under grant numbers
2544613, 2434916, 2321786, 2112533, as well as gifts from
Amazon Robotics and the Donald Bren Foundation. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, or the U.S. government.
Sven Koenig was awarded a WASP Distinguished Guest
Professorship at Örebro University.

References
Alkazzi, J.-M.; and Okumura, K. 2024. A Comprehensive
Review on Leveraging Machine Learning for Multi-Agent
Path Finding. IEEE Access.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the Atari Human Benchmark. In Interna-
tional conference on machine learning, 507–517. PMLR.
Bareinboim, E.; Forney, A.; and Pearl, J. 2015. Bandits with
Unobserved Confounders: A Causal Approach. Advances in
Neural Information Processing Systems, 28.
Chan, S.-H.; Chen, Z.; Lin, D.-L.; Zhang, Y.; Harabor, D.;
Koenig, S.; Huang, T.-W.; and Phan, T. 2024. Anytime
Multi-Agent Path Finding using Operation Parallelism in
Large Neighborhood Search. In Proceedings of the 23rd
International Conference on Autonomous Agents and Multi-
agent Systems, 2183–2185.
Chapelle, O.; and Li, L. 2011. An Empirical Evaluation of
Thompson Sampling. In Advances in neural information
processing systems, 2249–2257.
Chen, Y.; Cowling, P. I.; Polack, F. A. C.; and Mourdjis, P.
2016. A Multi-Arm Bandit Neighbourhood Search for Rout-
ing and Scheduling Problems.
Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2024. Traf-
fic Flow Optimisation for Lifelong Multi-Agent Path Find-
ing. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 38(18): 20674–20682.
Cohen, L.; Greco, M.; Ma, H.; Hernández, C.; Felner, A.;
Kumar, T. S.; and Koenig, S. 2018. Anytime Focal Search
with Applications. In IJCAI, 1434–1441.
Forney, A.; Pearl, J.; and Bareinboim, E. 2017. Counterfac-
tual Data-Fusion for Online Reinforcement Learners. In In-
ternational Conference on Machine Learning, 1156–1164.
PMLR.
Hendel, G. 2022. Adaptive Large Neighborhood Search for
Mixed Integer Programming. Mathematical Programming
Computation, 1–37.
Huang, T.; Dilkina, B.; and Koenig, S. 2021. Learning
Node-Selection Strategies in Bounded Suboptimal Conflict-
Based Search for Multi-Agent Path Finding. In Interna-
tional Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS).

Huang, T.; Li, J.; Koenig, S.; and Dilkina, B. 2022. Anytime
Multi-Agent Path Finding via Machine Learning-Guided
Large Neighborhood Search. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI), 9368–
9376.
Jiang, H.; Zhang, Y.; Veerapaneni, R.; and Li, J. 2024.
Scaling Lifelong Multi-Agent Path Finding to More Real-
istic Settings: Research Challenges and Opportunities. In
Proceedings of the Symposium on Combinatorial Search
(SoCS), 234–242.
Lam, E.; Harabor, D.; Stuckey, P. J.; and Li, J. 2023. Exact
Anytime Multi-Agent Path Finding Using Branch-and-Cut-
and-Price and Large Neighborhood Search. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS).
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021. Anytime Multi-Agent Path Finding via Large Neigh-
borhood Search. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 4127–4135.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2022. MAPF-LNS2: Fast Repairing for Multi-Agent Path
Finding via Large Neighborhood Search. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(9): 10256–
10265.
Nozick, R. 1969. Newcomb’s Problem and Two Principles
of Choice. In Essays in Honor of Carl G. Hempel: A Trib-
ute on the Occasion of His Sixty-Fifth Birthday, 114–146.
Springer.
Okumura, K. 2023. Improving LaCAM for Scalable Even-
tually Optimal Multi-Agent Pathfinding. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI).
Pearl, J. 2010. The Foundations of Causal Inference. Socio-
logical Methodology, 40(1): 75–149.
Phan, T.; Chan, S.-H.; et al. 2025. Counterfactual On-
line Learning for Open-Loop Monte-Carlo Planning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
39(25): 26651–26658.
Phan, T.; Driscoll, J.; Romberg, J.; and Koenig, S. 2024a.
Confidence-Based Curriculum Learning for Multi-Agent
Path Finding. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems,
1558–1566.
Phan, T.; Huang, T.; Dilkina, B.; and Koenig, S. 2024b.
Adaptive Anytime Multi-Agent Path Finding Using Bandit-
Based Large Neighborhood Search. Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 38(16):
17514–17522.
Phan, T.; Phan, T.; and Koenig, S. 2025. Generative Cur-
ricula for Multi-Agent Path Finding via Unsupervised and
Reinforcement Learning. Journal of Artificial Intelligence
Research, 82: 2471–2534.
Phan, T.; Zhang, B.; Chan, S.-H.; and Koenig, S. 2025. Any-
time Multi-Agent Path Finding with an Adaptive Delay-
Based Heuristic. In AAAI Conference on Artificial Intelli-
gence (AAAI), volume 39, 23286–23294.

Pisinger, D.; and Ropke, S. 2019. Large Neighborhood
Search. Handbook of metaheuristics, 99–127.
Ratner, D.; and Warmuth, M. 1986. Finding a Shortest So-
lution for the NxN Extension of the 15-Puzzle is Intractable.
In Proceedings of the Fifth AAAI National Conference on
Artificial Intelligence, AAAI’86, 168–172. AAAI Press.
Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. PRIMAL: Pathfinding via
Reinforcement and Imitation Multi-Agent Learning. IEEE
Robotics and Automation Letters, 4(3): 2378–2385.
Schaul, T.; Borsa, D.; Ding, D.; Szepesvari, D.; Ostrovski,
G.; Dabney, W.; and Osindero, S. 2019. Adapting Behaviour
for Learning Progress. arXiv preprint arXiv:1912.06910.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2012.
Conflict-Based Search For Optimal Multi-Agent Path Find-
ing. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 26(1): 563–569.
Silver, D. 2005. Cooperative Pathfinding. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 1(1): 117–122.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. In Proceedings of the International Sympo-
sium on Combinatorial Search, volume 10, 151–158.
Tan, J.; Luo, Y.; Li, J.; and Ma, H. 2025. Reevaluation of
Large Neighborhood Search for MAPF: Findings and Op-
portunities. 18th International Symposium on Combinato-
rial Search (SoCS).
Thompson, W. R. 1933. On the Likelihood that One Un-
known Probability exceeds Another in View of the Evidence
of Two Samples. Biometrika, 25(3/4): 285–294.
Yan, Z.; and Wu, C. 2024. Neural Neighborhood Search for
Multi-Agent Path Finding. In The 12th International Con-
ference on Learning Representations.
Yu, J.; and LaValle, S. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 27(1):
1443–1449.

