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Abstract
Anytime multi-agent path finding (MAPF) is a promising
approach to scalable and collision-free path optimization in
multi-agent systems. MAPF-LNS, based on Large Neighbor-
hood Search (LNS), is the current state-of-the-art approach
where a fast initial solution is iteratively optimized by de-
stroying and repairing selected paths of the solution. Cur-
rent MAPF-LNS variants commonly use an adaptive selec-
tion mechanism to choose among multiple destroy heuris-
tics. However, to determine promising destroy heuristics,
MAPF-LNS requires a considerable amount of exploration
time. As common destroy heuristics are stationary, i.e., non-
adaptive, any performance bottleneck caused by them can-
not be overcome by adaptive heuristic selection alone, thus
limiting the overall effectiveness of MAPF-LNS. In this pa-
per, we propose Adaptive Delay-based Destroy-and-Repair
Enhanced with Success-based Self-learning (ADDRESS) as
a single-destroy-heuristic variant of MAPF-LNS. ADDRESS
applies restricted Thompson Sampling to the top-K set of the
most delayed agents to select a seed agent for adaptive LNS
neighborhood generation. We evaluate ADDRESS in multi-
ple maps from the MAPF benchmark set and demonstrate
cost improvements by at least 50% in large-scale scenarios
with up to a thousand agents, compared with the original
MAPF-LNS and other state-of-the-art methods.

1 Introduction
A wide range of real-world applications like goods trans-
portation in warehouses, search and rescue missions, and
traffic management can be formulated as Multi-Agent Path
Finding (MAPF) problem, where the goal is to find collision-
free paths for multiple agents with each having an assigned
start and goal location. Finding optimal solutions, w.r.t. min-
imal flowtime or makespan is NP-hard, which limits scal-
ability of most state-of-the-art MAPF solvers (Ratner and
Warmuth 1986; Sharon et al. 2012; Yu and LaValle 2013).

Anytime MAPF based on Large Neighborhood Search
(LNS) is a promising approach to finding fast and high-
quality solutions to the MAPF problem within a fixed time
budget (Li et al. 2021). Given an initial feasible solution and
a set of destroy heuristics, LNS iteratively destroys and re-
plans a fixed number of paths, according to an agent neigh-
borhood, until the time budget runs out. MAPF-LNS repre-
sents the current state-of-the-art in anytime MAPF and has
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Figure 1: Scheme of our contribution. Instead of using an
adaptive selection mechanism π to choose among multiple
stationary destroy heuristics Hx (Li et al. 2021), ADDRESS
(our approach) only uses a single adaptive heuristic.

been experimentally shown to scale up to scenarios with
hundreds of agents (Li et al. 2021). Due to its increas-
ing popularity, several extensions have been proposed like
fast local repairing, integration of primal heuristics, machine
learning-guided neighborhood selection, neighborhood size
adaptation, and parallelism (Chan et al. 2024; Huang et al.
2022; Lam et al. 2023; Li et al. 2022; Phan et al. 2024b).

Current MAPF-LNS variants use an adaptive selection
mechanism π to choose from the set of destroy heuristics,
as illustrated in Figure 1 (Ropke and Pisinger 2006). How-
ever, to determine promising destroy heuristics, MAPF-LNS
requires a considerable amount of exploration time. As com-
mon destroy heuristics are stationary, i.e., non-adaptive (Li
et al. 2021), any performance bottleneck caused by them
cannot be overcome by the adaptive selection mechanism π
alone, thus limiting the overall effectiveness of MAPF-LNS.

In this paper, we propose Adaptive Delay-based Destroy-
and-Repair Enhanced with Success-based Self-learning
(ADDRESS), as a single-destroy-heuristic variant of MAPF-
LNS, illustrated in Figure 1. ADDRESS applies restricted
Thompson Sampling to the top-K set of the most delayed
agents to select a seed agent for adaptive LNS neighborhood
generation. Our contributions are as follows:
• We discuss a performance bottleneck of the current em-

pirically most effective destroy heuristic in MAPF-LNS
and its implications for large-scale scenarios.

• We define an adaptive destroy heuristic, called AD-
DRESS heuristic, to generate neighborhoods based on
the top-K set of the most delayed agents, using multi-



armed bandits like Thompson Sampling. We formulate
a simplified variant of MAPF-LNS using only our AD-
DRESS heuristic, as illustrated in Figure 1.

• We evaluate ADDRESS in multiple maps from the
MAPF benchmark set (Stern et al. 2019) and demonstrate
cost improvements by at least 50% in large-scale scenar-
ios with up to a thousand agents, compared with the orig-
inal MAPF-LNS and other state-of-the-art methods.

While our paper focuses on MAPF, our ADDRESS
heuristic can also be applied to other problem classes, where
variables can be sorted by their cost contribution to generate
LNS neighborhoods (Pisinger and Ropke 2019).

2 Background
2.1 Multi-Agent Path Finding (MAPF)
We focus on maps as undirected unweighted graphs G =
⟨V, E⟩, where vertex set V contains all possible locations and
edge set E contains all possible transitions or movements
between adjacent locations. An instance I consists of a map
G and a set of agents A = {a1, ..., am} with each agent ai
having a start location si ∈ V and a goal location gi ∈ V .
At every time step t, all agents can move along the edges in
E or wait at their current location (Stern et al. 2019).

MAPF aims to find a collision-free plan for all agents.
A plan P = {p1, ..., pm} consists of individual paths
pi = ⟨pi,1, ..., pi,l(pi)⟩ per agent ai, where ⟨pi,t, pi,t+1⟩ =
⟨pi,t+1, pi,t⟩ ∈ E , pi,1 = si, pi,l(pi) = gi, and l(pi) is the
length or travel distance of path pi. The delay del(pi) of
path pi is defined by the difference of path length l(pi) and
the length of the shortest path from si to gi w.r.t. map G.

In this paper, we consider vertex conflicts ⟨ai, aj , v, t⟩ that
occur when two agents ai and aj occupy the same location
v ∈ V at time step t and edge conflicts ⟨ai, aj , u, v, t⟩ that
occur when two agents ai and aj traverse the same edge
⟨u, v⟩ ∈ E in opposite directions at time step t (Stern et al.
2019). A plan P is a solution, i.e., feasible when it does
not have any vertex or edge conflicts. Our goal is to find
a feasible solution by minimizing the flowtime

∑
p∈P l(p)

equivalent to minimizing the sum of delays or (total) cost
c(P ) =

∑
p∈P del(p). In the context of anytime MAPF, we

also consider the Area Under the Curve (AUC) as a measure
of how quickly we approach the quality of our final solution.

2.2 Anytime MAPF with LNS
Anytime MAPF searches for solutions within a given time
budget. The solution quality monotonically improves with
increasing time budget (Cohen et al. 2018; Li et al. 2021).

MAPF-LNS based on Large Neighborhood Search (LNS)
is the current state-of-the-art approach to anytime MAPF
and shown to scale up to large-scale scenarios with hundreds
of agents (Huang et al. 2022; Li et al. 2021). Starting with
an initial feasible plan P , e.g., found via prioritized planning
(PP) from (Silver 2005), MAPF-LNS iteratively modifies P
by destroying N < m paths of the neighborhood AN ⊂ A.
The destroyed paths P− ⊂ P are then repaired or replanned
using PP to quickly generate new paths P+. If the new cost

c(P+) is lower than the previous cost c(P−), then P is re-
placed by (P\P−)∪ P+, and the search continues until the
time budget runs out. The result of MAPF-LNS is the last
accepted solution P , with the lowest cost so far.

MAPF-LNS uses a set of three destroy heuristics, namely
a random uniform selection of N agents, an agent-based
heuristic, and a map-based heuristic (Li et al. 2021). The
agent-based heuristic generates a neighborhood, including a
seed agent aj with the current maximum delay and other
agents, determined via random walks, that prevent aj from
achieving a lower delay. The map-based heuristic randomly
chooses a vertex v ∈ V with a degree greater than 2 and
generates a neighborhood of agents moving around v. All
heuristics are randomized but stationary since they do not
adapt their rules and degree of randomization, i.e., the distri-
butions, based on prior improvements made to the solution.

The original MAPF-LNS uses an adaptive selection mech-
anism π by maintaining selection weights to choose destroy
heuristics P (Li et al. 2021; Ropke and Pisinger 2006).

2.3 Multi-Armed Bandits
Multi-armed bandits (MABs) or simply bandits are funda-
mental decision-making problems, where an MAB or selec-
tion algorithm π repeatedly chooses an arm j among a given
set of arms or options {1, ...,K} to maximize an expected
reward of a stochastic reward function R(j) := Xj , where
Xj is a random variable with an unknown distribution fXj

(Auer, Cesa-Bianchi, and Fischer 2002). To solve an MAB,
one has to determine an optimal arm j∗, which maximizes
the expected reward E

[
Xj

]
. The MAB algorithm π has to

balance between exploring all arms j to accurately estimate
E
[
Xj

]
and exploiting its knowledge by greedily selecting

the arm j with the currently highest estimate of E
[
Xj

]
. This

is known as the exploration-exploitation dilemma, where ex-
ploration can find arms with higher rewards but requires
more time for trying them out, while exploitation can lead to
fast convergence but possibly gets stuck in a poor local op-
timum. We will focus on Thompson Sampling and ϵ-Greedy
as MAB algorithms and explain them in Section 4.2.

3 Related Work
3.1 Multi-Armed Bandits for LNS
In recent years, MABs have been used to tune learning and
optimization algorithms on the fly (Badia et al. 2020; Hen-
del 2022; Schaul et al. 2019). UCB1 and ϵ-Greedy are com-
monly used for LNS destroy heuristic selection in traveling
salesman problems (TSP), mixed integer linear program-
ming (MILP), and vehicle routing problems (VRP) (Chen
et al. 2016; Hendel 2022). In most cases, a heavily en-
gineered reward function with several weighted terms is
used for training the MAB. Recently, a MAPF-LNS variant,
called BALANCE, has been proposed to adapt the neighbor-
hood size N along with the destroy heuristic choice using a
bi-level Thompson Sampling approach (Phan et al. 2024b).

Instead of adapting the destroy heuristic selection, we pro-
pose a single adaptive destroy heuristic, thus simplifying the
high-level MAPF-LNS procedure (Figure 1). Our destroy



heuristic uses restricted Thompson Sampling with simple bi-
nary rewards to select a seed agent from the top-K set of
the most delayed agents for LNS neighborhood generation,
which can also be applied to other problem classes, such as
TSP, MILP, or VRP (Pisinger and Ropke 2019).

3.2 Machine Learning in Anytime MAPF
Machine learning has been used in MAPF to directly learn
collision-free path finding, to guide the node selection in
search trees, or to select appropriate MAPF algorithms for
certain maps (Alkazzi and Okumura 2024; Huang, Dilk-
ina, and Koenig 2021; Kaduri, Boyarski, and Stern 2020;
Phan et al. 2024a, 2025; Sartoretti et al. 2019). (Huang et al.
2022; Yan and Wu 2024) propose machine learning-guided
variants of MAPF-LNS, where neighborhoods are generated
by stationary procedures, e.g., the destroy heuristics of (Li
et al. 2021). The neighborhoods are then selected via an of-
fline trained model. Such methods cannot adapt during the
search and require extensive prior efforts like data acquisi-
tion, model training, and feature engineering.

We focus on adaptive approaches to MAPF-LNS using
online learning via MABs. Our destroy heuristic can adjust
on the fly via binary reward signals, indicating a successful
or failed improvement of the solution quality. The rewards
are directly obtained from the LNS without any prior data
acquisition or expensive feature engineering.

4 Adaptive Delay-Based MAPF-LNS
We now introduce Adaptive Delay-based Destroy-and-
Repair Enhanced with Success-based Self-learning (AD-
DRESS) as a simplified yet effective variant of MAPF-LNS.

4.1 Original Agent-Based Destroy Heuristic
Our adaptive destroy heuristic is inspired by the agent-based
heuristic of (Li et al. 2021), which is empirically confirmed
to be the most effective standalone heuristic in most maps
(Li et al. 2021; Phan et al. 2024b).

The idea is to select a seed agent aj ∈ A, whose path
pj ∈ P has a high potential to be shortened, indicated by its
delay del(pj). A random walk is performed from a random
position in pj to collect N−1 other agents ai whose paths pi
are crossed by the random walk, indicating their contribution
to the delay del(pj), to generate a neighborhood AN ⊂ A
of size |AN | = N < m for LNS destroy-and-repair.

The original destroy heuristic of (Li et al. 2021)
greedily selects the seed agent with the maximum delay
maxpi∈P del(pi). To avoid repeated selection of the same
agent, the original heuristic maintains a tabu list, which is
emptied when all agents have been selected or when the cur-
rent seed agent aj has no delay, i.e., del(pj) = 0. Therefore,
the heuristic has to iterate over all agents ai ∈ A in the
worst case, which is time-consuming for large-scale scenar-
ios with many agents, introducing a potential performance
bottleneck. The original MAPF-LNS cannot overcome this
bottleneck because it only adapts the high-level heuristic se-
lection via π, as shown in Figure 1, and thus can only switch
to other (less effective) destroy heuristics as an alternative.

4.2 ADDRESS Destroy Heuristic
Our goal is to overcome the limitation of the original agent-
based destroy heuristic, and consequently of MAPF-LNS,
using MABs. We model each agent ai ∈ A as an arm i
and maintain two counters per agent, namely αi > 0 for
successful cost improvements, and βi > 0 for failed cost
improvements. Both counters represent the parameters of a
Beta distribution Beta(αi, βi), which estimates the poten-
tial of an agent ai ∈ A to improve the solution as a seed
agent. Beta(αi, βi) has a mean of αi

αi+βi
and is initialized

with αi = 1 and βi = 1, corresponding to an initial 50:50
chance estimate that an agent ai could improve the solution
if selected as a seed agent (Chapelle and Li 2011).

Since the number of agents m can be large, a naive MAB
would need to explore an enormous arm space, which poses
a similar bottleneck as the tabu list approach of the origi-
nal agent-based heuristic (Section 4.1). Thus, we restrict the
agent selection to the top-K set AK ⊆ A of the most de-
layed agents with K ≤ m to ease exploration.

The simplest MAB is ϵ-Greedy, which selects a random
seed agent ai ∈ AK with a probability of ϵ ∈ [0, 1], and the
agent with the highest expected success rate αi

αi+βi
with the

complementary probability of (1− ϵ).
We propose a restricted Thompson Sampling approach to

select a seed agent fromAK . For each agent ai ∈ AK within
the top-K set, we sample an estimate qi ∼ Beta(αi, βi)
of the solution improvement rate and select the agent with
the highest sampled estimate qi. Thompson Sampling is a
Bayesian approach with Beta(1, 1) being the prior distribu-
tion of the improvement success rate and Beta(αi, βi) with
updated parameters αi and βi being the posterior distribu-
tion (Chapelle and Li 2011; Thompson 1933).

Our destroy heuristic, called ADDRESS heuristic, first
sorts all agents w.r.t. their delays to determine the top-K set
AK ⊆ A of the most delayed agents. Restricted Thomp-
son Sampling is then applied to the parameters αi and βi

of all agents ai ∈ AK to select a seed agent aj . An LNS
neighborhood AN ⊂ A is generated via random walks, ac-
cording to (Li et al. 2021), by adding agents ai ∈ A whose
paths are crossed by the random walk. Note that these agents
ai ∈ AN\{aj} are not necessarily part of the top-K setAK .

The full formulation of our ADDRESS heuristic with
Thompson Sampling is provided in Algorithm 1, where
I represents the instance to be solved, P represents the
current solution, K restricts the seed agent selection, and
⟨αi, βi⟩1≤i≤m represent the parameters for the correspond-
ing Beta distributions per agent for Thompson Sampling.

4.3 ADDRESS Formulation
We now integrate our ADDRESS heuristic into the MAPF-
LNS algorithm (Li et al. 2021). For a more focused search,
we propose a simplified variant, called ADDRESS, which
only uses our adaptive destroy heuristic instead of determin-
ing a promising stationary heuristic via time-consuming ex-
ploration, as illustrated in Figure 1.

ADDRESS iteratively invokes our proposed destroy
heuristic of Algorithm 1 with the parameters ⟨αi, βi⟩1≤i≤m

to select a seed agent aj ∈ A and generate an LNS neigh-



Algorithm 1: ADDRESS Destroy Heuristic

1: procedure ADDRESSDestroy(I, P,K, ⟨αi, βi⟩1≤i≤m)
2: Sort all agents ai ∈ A w.r.t. their delays del(pi)
3: Select the top-K set AK ⊆ A w.r.t. the delays
4: for agent ai in AK do
5: qi ∼ Beta(αi, βi) ▷ Restr. Thompson Sampling
6: end for
7: j ← argmaxiqi ▷ Select the seed agent index
8: AN ∼ RandomWalkNeighborhood(I, P, aj) ▷

Random walk routine of (Li et al. 2021)
9: return ⟨AN , j⟩ ▷ Neighborhood and seed agent

10: end procedure

borhood AN ⊂ A using the random walk procedure of the
original MAPF-LNS (Li et al. 2021). Afterward, the stan-
dard destroy-and-repair operations of MAPF-LNS are per-
formed on the neighborhood AN to produce a new solution
P ′ = (P\P−)∪P+. If the new solution P ′ has a lower cost
than the previous solution P , then αj is incremented and P
is replaced by P ′. Otherwise, βj is incremented. The whole
procedure is illustrated in Figure 2.

The full formulation of ADDRESS is provided in Al-
gorithm 2, where I represents the instance to be solved
and K restricts the seed agent selection. The parameters
⟨αi, βi⟩1≤i≤m are all initialized with 1 as a uniform prior.

4.4 Conceptual Discussion
ADDRESS is a simple and adaptive approach to scalable
anytime MAPF. The adaptation is controlled by the learn-
able parameters αi and βi per agent ai, and the top-K rank-
ing of potential seed agents. Our ADDRESS heuristic can
significantly improve MAPF-LNS, overcoming the perfor-
mance bottleneck of the original agent-based heuristic of (Li
et al. 2021) by selecting seed agents via MABs instead of
greedily, and restricting the selection to the top-K set of the
most delayed agents AK to ease exploration.

The parameters αi and βi enable the seed agent selec-
tion via Thompson Sampling, which considers the improve-
ment success rate under uncertainty via Bayesian inference
(Thompson 1933). Unlike prior MAB-enhanced LNS ap-
proaches, ADDRESS only uses binary rewards denoting
success or failure, thus greatly simplifying our approach
compared to alternative MAB approaches (Chen et al. 2016;
Chmiela et al. 2023; Hendel 2022; Phan et al. 2024b).

The top-K set enables efficient learning by reducing the
number of options for Thompson Sampling, which other-
wise would require exhaustive exploration of all agents ai ∈
A. The top-K set supports fast adaptation by filtering out
seed agent candidates whose paths were significantly short-
ened earlier. While the top-K ranking causes some overhead
due to sorting agents, our experiments in Section 5 suggest
that the sorting overhead is outweighed by the performance
gains regarding cost and AUC in large-scale scenarios.

Our single-destroy-heuristic approach enables a more fo-
cused search toward high-quality solutions without time-
consuming exploration of stationary (and less effective) de-
stroy heuristics. Due to its simplicity, our ADDRESS heuris-

tic can be easily applied to other problem classes, such as
TSP, MILP, or VRP, when using so-called worst or criti-
cal destroy heuristics, focusing on high-cost variables that
“spoil” the structure of the solution (Pisinger and Ropke
2019). We defer such applications to future work.

Algorithm 2: MAPF-LNS with our ADDRESS Heuristic

1: procedure ADDRESS(I,K)
2: ⟨αi, βi⟩ ← ⟨1, 1⟩ for all agents ai ∈ A
3: P = {p1, ..., pm} ← RunInitialSolver(I)
4: while runtime limit not exceeded do
5: B ← ⟨αi, βi⟩1≤i≤m ▷ Distribution parameters
6: ⟨AN , j⟩ ← ADDRESSDestroy(I, P,K,B) ▷

See Algorithm 1
7: P− ← {pi|ai ∈ AN}
8: P+ ← DestroyAndRepair(I, AN , P\P−)
9: if c(P−)− c(P+) > 0 then

10: P ← (P\P−) ∪ P+ ▷ Replace solution
11: αj ← αj + 1 ▷ Success update
12: else
13: βj ← βj + 1 ▷ Failure update
14: end if
15: end while
16: return P
17: end procedure

5 Experiments1

Maps We evaluate ADDRESS on five maps from the
MAPF benchmark set of (Stern et al. 2019), namely
(1) a Random map (Random-32-32-20), (2) two Game
maps Ost003d and (3) Den520d, (4) a Warehouse
map (Warehouse-20-40-10-2-2), and (5) a City map
(Paris 1 256). All maps have different sizes and structures.
We conduct all experiments on the publicly available 25 ran-
dom scenarios per map.

Anytime MAPF Algorithms We implemented AD-
DRESS with Thompson Sampling and ϵ-Greedy, denoted
by ADDRESS (X), where X is the MAB algorithm. Our im-
plementation is based on the public code of (Li et al. 2022;
Phan et al. 2024b). We use the original MAPF-LNS, MAPF-
LNS2, and BALANCE implementations from the respective
code bases with their default configurations, unless stated
otherwise. We also run LaCAM* from (Okumura 2023).

We always set the neighborhood size N = 8 (except for
BALANCE, which automatically adapts N ), K = 32, and
use Thompson Sampling for ADDRESS and BALANCE,
unless stated otherwise. ϵ-Greedy is used with ϵ = 1

2 . All
MAPF-LNS variants use PP to generate initial solutions and
repair LNS neighborhoods, as suggested in (Li et al. 2021;
Huang et al. 2022).

Compute Infrastructure All experiments were run on a
high-performance computing cluster with CentOS Linux,
Intel Xeon 2640v4 CPUs, and 64 GB RAM.

1Code is provided at https://github.com/JimyZ13/ADDRESS.
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Figure 2: Detailed overview of ADDRESS. For each agent ai ∈ A, we maintain two parameters αi, βi > 0. At each LNS
iteration, all agents are sorted w.r.t. to their delays. A restricted Thompson Sampling approach is applied to the top-K set of the
most delayed agents, according to their samples qi ∼ Beta(αi, βi), to choose a seed agent index j. The path of the seed agent
aj is used to generate an LNS neighborhood AN ⊂ A via random walks. After running the LNS destroy-and-repair operations
on AN , the parameters αj or βj of the seed agent aj are updated, depending on the cost improvement of the new solution.

Figure 3: Sum of delays for ADDRESS (using ϵ-greedy
or Thompson Sampling) compared with MAPF-LNS (using
only the agent-based heuristic) for different numbers of op-
tions K with m = 700 agents in both maps, a time budget
of 60 seconds, and ϵ = 1

2 .

5.1 Experiment – Choice of K
Setting We run ADDRESS with Thompson Sampling
and ϵ-Greedy to evaluate different choices of K ∈
{8, 16, 32, 64, 128, 256} on the Den520d and City map
with m = 700 agents and a time budget of 60 seconds. The
results are compared with MAPF-LNS using only the agent-
based heuristic of (Li et al. 2021), as a stationary variant.

Results The results are shown in Figure 3. ADDRESS
with Thompson Sampling always performs best when K <
256. However, ADDRESS is more sensitive to K when us-
ing ϵ-Greedy, which only outperforms the original agent-
based heuristic, when 8 < K < 64. In all our test maps,
both ADDRESS variants work best when K = 32.

Discussion The results indicate that both ADDRESS vari-
ants with either Thompson Sampling or ϵ-Greedy can
notably outperform the original agent-based heuristic of
MAPF-LNS with sufficient restriction via K < m. Thomp-
son Sampling is more robust regarding the choice of K.

5.2 Experiment – Delay-Based Heuristics
Setting Next, we evaluate the search progress of AD-
DRESS with Thompson Sampling and ϵ-Greedy for dif-
ferent time budgets on the Den520d and City map with
m = 700 agents. The results are compared with MAPF-LNS
using only the agent-based heuristic, as a stationary variant.

Results The results are shown in Figure 4. Both AD-
DRESS variants outperform the agent-based MAPF-LNS by
always achieving lower sums of delays and AUC values,
which indicate that ADDRESS always improves faster than
the original agent-based heuristic. Thompson Sampling al-
ways performs at least as well as ϵ-Greedy.

Discussion The results demonstrate the potential of both
ADDRESS variants to improve MAPF-LNS over the origi-
nal agent-based heuristic for any time budget w.r.t. solution
cost and speed of cost improvement. This confirms that the
combination of MABs and the top-K set can overcome the
performance bottleneck of the original agent-based heuristic
(Section 4.1) with negligible overhead (Section 4.4).

5.3 Experiment – ADDRESS and MAPF-LNS
Setting We compare ADDRESS with the original MAPF-
LNS using all stationary destroy heuristics of (Li et al.
2021), as described in Section 2.2, for different time bud-
gets on the Den520d, Warehouse, and City map with
m = 700 agents. To evaluate the dominance of our AD-
DRESS heuristic over all stationary heuristics, we introduce
a MAPF-LNS variant including all commonly used destroy
heuristics, as well as our own.

Results The results are shown in Figure 5. ADDRESS out-
performs both MAPF-LNS variants. The MAPF-LNS vari-
ant with our ADDRESS heuristic performs second best in
Den520d and generally in the other maps with a maximum



Figure 4: Sum of delays and AUC for ADDRESS (using ϵ-
greedy or Thompson Sampling) compared with MAPF-LNS
(using only the agent-based heuristic) for different time bud-
gets (starting from 15 seconds) with m = 700 agents in both
maps and ϵ = 1

2 . Shaded areas show the 95% confidence in-
terval.

time budget of 30 seconds. Using our ADDRESS heuristics
always leads to a lower average AUC when the time budget
is lower than 120 seconds. The selection weights of MAPF-
LNS indicate that our ADDRESS heuristic is the dominant
destroy heuristic, as it is quickly preferred over all other
heuristics.

Discussion The results confirm that our ADDRESS
heuristic is more effective than the other heuristics in large-
scale scenarios with m = 700 agents (Li et al. 2021), as it
is consistently preferred by the original MAPF-LNS within
less than 10 seconds of runtime. MAPF-LNS, with our
ADDRESS heuristic, generally underperforms ADDRESS
since it additionally explores the less effective destroy
heuristics, whereas ADDRESS directly optimizes the seed
agent selection for LNS neighborhood generation.

5.4 Experiment – State-of-the-Art Comparison
Setting Finally, we compare ADDRESS with the original
MAPF-LNS, MAPF-LNS2 (which finds feasible solutions
by minimizing collisions), BALANCE, and LaCAM*. We
run all algorithms on the Random, Ost003d, Den520d,
Warehouse, and City maps with different numbers of
agents m and a time budget of 60 seconds.

Results The results with ADDRESS, MAPF-LNS,
MAPF-LNS2, and BALANCE are shown in Figure
6. ADDRESS significantly outperforms all other ap-
proaches except in Random. BALANCE slightly outper-
forms MAPF-LNS and MAPF-LNS2 in Den520d and
Warehouse with m ≥ 600. Due to the large performance
gap, we report the sum of delays of LaCAM* and AD-
DRESS separately in Table 1 for the maximum number of
agents per map tried in this experiment. ADDRESS (and all
other baselines) clearly outperforms LaCAM*.

Table 1: Average sum of delays of ADDRESS and LaCAM*
with 95% confidence intervals with a time budget of 60 sec-
onds and the maximum number of agents per map evaluated
in Figure 6. The best performance is highlighted in boldface.

ADDRESS LaCAM*
Random 3,343.52± 120 10, 146.4± 1399
Ost003d 10,788.4± 1219 38, 632± 3925
Den520d 2,646.4± 433 33, 604.4± 3823
Warehouse 3,047.8± 2165 70, 107.8± 911
City 2,645.1± 772 48, 760.6± 614

Discussion The experiment demonstrates the ability of
ADDRESS to outperform the state-of-the-art in large-
scale scenarios with up to a thousand agents like in the
Warehouse or City map. The high-level simplification
of MAPF-LNS allows ADDRESS to focus its runtime on
optimizing seed agents for neighborhood generation with-
out (1) exploring less effective destroy heuristics or (2) it-
erating through the whole agent set A, unlike the origi-
nal agent-based destroy heuristic, used in MAPF-LNS and
BALANCE. However, ADDRESS does not outperform the
baselines in smaller scenarios, e.g., in the Random map. In
this case, the overhead caused by agent sorting and Thomp-
son Sampling outweighs the benefits of ADDRESS. In con-
trast, MAPF-LNS and BALANCE resort to the map-based
heuristic, which is the dominant heuristic in the Random
map (Li et al. 2021).

6 Conclusion
We presented ADDRESS as a single-destroy-heuristic vari-
ant of MAPF-LNS. ADDRESS applies restricted Thompson
Sampling to the top-K set of the most delayed agents to se-
lect a seed agent for adaptive LNS neighborhood generation.
Therefore, ADDRESS avoids time-consuming exploration
of several stationary destroy heuristics.

Our experiments show that ADDRESS significantly out-
performs state-of-the-art anytime MAPF algorithms like the
original MAPF-LNS, MAPF-LNS2, BALANCE, and La-
CAM* in large-scale scenarios with up to a thousand agents.
The effectiveness of our destroy heuristic is confirmed by
its lower costs and AUC compared with the original agent-
based destroy heuristic in MAPF and the strong preference
by the original MAPF-LNS over all other commonly used
destroy heuristics. The combination of Thompson Sampling
and the top-K ranking of the most delayed agents enables
efficient learning and a stronger focus on promising seed
agent candidates through fast adaptation and filtering of
agents whose paths were significantly shortened over time.
ADDRESS with ϵ-Greedy can also outperform state-of-the-
art anytime MAPF with slightly weaker performance than
Thompson Sampling, indicating that other MAB algorithms
could be used, which we want to investigate in the future.

More future work includes the abstraction of agents and
the application of our ADDRESS heuristic to other problem
classes, such as TSP, MILP, or VRP, where variables can be
sorted by their cost contribution to generate neighborhoods.



Figure 5: Sum of delays (left) and AUC (middle) for ADDRESS compared with the original MAPF-LNS (with and without
our ADDRESS heuristic) for different time budgets (starting from 15 seconds) with m = 700 agents in all maps. Shaded areas
show the 95% confidence interval. Right: Evolution of the selection weights of MAPF-LNS with our ADDRESS heuristic over
time.

Figure 6: Sum of delays for ADDRESS compared with the original MAPF-LNS (without our ADDRESS heuristic), MAPF-
LNS2, and BALANCE for different numbers of agents m and a time budget of 60 seconds. Shaded areas show the 95%
confidence interval. The legend at the top applies across all plots. A comparison with LaCAM* is shown in Table 1. |V| denotes
the corresponding map size, i.e., the number of occupiable locations.
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