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Abstract

Peer incentivization (PI) is a recent approach where all agents learn
to reward or penalize each other in a distributed fashion, which often
leads to emergent cooperation. Current PI mechanisms implicitly assume
a flawless communication channel in order to exchange rewards. These
rewards are directly incorporated into the learning process without any
chance to respond with feedback. Furthermore, most PI approaches
rely on global information, which limits scalability and applicability
to real-world scenarios where only local information is accessible.
In this paper, we propose Mutual Acknowledgment Token Exchange
(MATE), a PI approach defined by a two-phase communication pro-
tocol to exchange acknowledgment tokens as incentives to shape indi-
vidual rewards mutually. All agents condition their token transmis-
sions on the locally estimated quality of their own situations based
on environmental rewards and received tokens. MATE is completely
decentralized and only requires local communication and information.
We evaluate MATE in three social dilemma domains. Our results show
that MATE is able to achieve and maintain significantly higher levels
of cooperation than previous PI approaches. In addition, we evaluate
the robustness of MATE in more realistic scenarios, where agents can
deviate from the protocol and communication failures can occur. We
also evaluate the sensitivity of MATE w.r.t. the choice of token values.
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1 Introduction

Many potential Al scenarios like autonomous driving [54], smart grids [15], or
general IoT scenarios [12], where multiple autonomous systems coexist within
a shared environment, can be naturally modeled as self-interested multi-agent
systems (MAS) [8, 34]. In self-interested MAS, each autonomous system or
agent attempts to achieve an individual goal while adapting to its environment,
i.e., other agents’ behavior [17]. Conflict and competition are common in such
systems due to opposing goals or shared resources [34, 42].

In order to maximize social welfare or efficiency in self-interested MAS,
all agents need to cooperate, which requires them to refrain from selfish and
greedy behavior for the greater good. The tension between individual and
collective rationality is typically modeled as a social dilemma (SD) [47]. SDs
can be temporally extended to sequential social dilemmas (SSD) to model
more realistic scenarios [31].

Multi-agent reinforcement learning (MARL) has become popular for mod-
eling individually rational agents in SDs and SSDs to examine emergent
behavior [8; 20, 31, 42, 49]. The goal of each agent is defined by an individ-
ual reward function. Non-cooperative game theory and empirical studies have
shown that naive MARL approaches commonly fail to learn cooperative behav-
ior due to individual selfishness and lacking benevolence toward other agents,
which leads to defective behavior [4, 17, 31, 64].

One reason for mutual defection is non-stationarity, where naively learning
agents do not consider the learning dynamics of other agents but only adapt
reactively [8, 23, 30, 61]. This can cause agents to defect from mutual coop-
eration, as studied extensively for the Prisoner’s Dilemma [4, 17, 31, 47]. To
mitigate this problem, some approaches propose to adapt the learning rate
based on the outcome [7, 38, 67] or to incorporate information on other agents’
adaptations, like gradients or opponent models [17, 33, 28]. These approaches
are either tabular or require full observability to perceive each other’s behav-
ior and thus do not scale to complex domains. Furthermore, some approaches
require knowledge about other agents’ objectives to estimate their degree of
adaptation therefore violating privacy [17, 33].

Another reason for mutual defection is the reward structure, which was
found to be crucial for social intelligence [31, 55]. Prior work has shown that
adequate reward formulations can lead to emergent cooperation in particular
domains [5, 13, 14, 25, 43]. However, finding an appropriate reward formu-
lation for any domain is generally not trivial. Recent approaches adapt the
reward dynamically to drive all agents towards cooperation [25, 27, 28, 69].
Peer incentivization (PI) is a distributed approach where all agents learn to
reward or penalize each other, which often leads to emergent cooperation
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[37, 52, 65, 69]. Current PI mechanisms implicitly assume a flawless communi-
cation channel in order to exchange rewards. These rewards are assumed to be
simply incorporated into the learning process without any chance to respond
with feedback. Furthermore, most PI approaches rely on global information
like joint actions [69], a central market function [52], or publicly available infor-
mation [65], which limits scalability and applicability to real-world scenarios
where only local information is accessible.

Once emergent cooperation has been achieved, it needs to be maintained
to withstand social pressure, such as the tragedy of the commons, where many
agents compete for scarce resources such that the outcome is less efficient than
possible [31, 42] or disturbances like protocol defections or communication fail-
ures [4, 11]. Thus, reciprocity is important to establish stable cooperation, where
social welfare is maintained over time without deterioration by adequately
responding to both cooperative and defective opponent behavior [3, 4, 48].
While reciprocity has already been considered in some prior learning rules
[7,17, 33, 35], there has been very little attention in most PI approaches, where
agents are only able to exchange positive rewards to reach a consensus for
cooperation — without any penalization mechanism against potential exploita-
tion [37, 52, 69]. The lack of reciprocity at the reward level can, therefore, lead
to naive cooperation in PI, which can be easily destabilized [29].

So far, penalization via negative rewards have been mostly provided by
the environment rather than as a PI-based incentive [17, 29, 32]. However,
the vast majority of SSD work studies specialized environments like Harvest
or Cleanup that do not yield any negative reward for defective behavior, as
defection only affects the temporal dynamics of the respective environment,
such as being stunned or reducing the regrowth rate of resources [9, 19, 24,
25, 26, 28, 31, 37, 41, 42, 50, 52, 69]. While this indirectly affects the whole
MAS, there is no explicit penalization of particular agents [25, 42]. Therefore,
current PI research is mainly biased toward non-penalizing environments and
approaches that lack reward-level reciprocity in general.

In this paper, we propose Mutual Acknowledgment Token FExchange
(MATE), a PI approach defined by a two-phase communication protocol, as
shown in Fig. 1, to exchange acknowledgment tokens as incentives to shape
individual rewards mutually. All agents condition their token transmissions
on the locally estimated quality of their own situations based on environmen-
tal rewards and received tokens. MATE is completely decentralized and only
requires local communication and information without knowing the objective
of other agents or any public information. Our contributions include:

® The concept of monotonic improvement, where each agent can locally
estimate the long- or short-term quality of its own situation based on
environmental rewards and received tokens.

® The MATE communication protocol and reward formulation using mono-
tonic improvement estimation. The two phases of MATE ensure reward-
level reciprocity, where agents get rewarded for accepted acknowledgment
requests but penalized for rejected ones.
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Fig. 1: MATE protocol example. (a) If agent 1 estimates the monotonic
improvement MI; (ry1) > 0 of its own situation, it ”thanks” its neighbor agents
2 and 3 by sending an acknowledgment request x; > 0 as reward. (b) Agent 2
and 3 check if the request x1 monotonically improves their own situation along
with their own respective reward. If so, a positive reward (e.g., yo = +x1) is
sent back as a response. If not, a negative reward (e.g., y3 = —x1) is sent back.

® An empirical evaluation of MATE in three SD domains and a comparison
with other PI approaches w.r.t. different metrics. Our results show that
MATE is able to achieve and maintain significantly higher levels of cooper-
ation than previous PI approaches. In addition, we evaluate the robustness
of MATE in more realistic scenarios, where agents can anomalously deviate
from the protocol and communication failures can occur. We also evaluate
the sensitivity of MATE w.r.t. the choice of token values.

This paper is an extended and revised version of our prior work [45], which
was presented at the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). The main extensions are more detailed
discussions regarding practicability and reciprocity, additional experiments
examining the sensitivity of MATE w.r.t. the choice of token values, and a
discussion of limitations and prospects to address them.

2 Background

2.1 Problem Formulation

We formulate self-interested MAS as partially observable stochastic game M =
(D,S, A, P, R, Z,Q), where D = {1,..., N} is a set of agents i, S is a set
of states s; at time step t, A = (Aj, ..., Ay) = (A;)iep is the set of joint
actions a; = (a¢,i)iep, P(St+1|st, ar) is the transition probability, (r;)iep =
R(st,ar) € RY is the joint reward, Z is a set of local observations 2z, for
each agent i € D, and Q(s;) = 2, = (214)iep € ZV is the joint observation of
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state s;. Each agent ¢ maintains a local history 7; € (2 x A;)*. m;(ae;|m4) is
the action selection probability represented by the individual policy of agent
i. In addition, we assume each agent i to have a neighborhood N;; C D —
{i} of other agents at every time step ¢, which is domain-dependent, e.g.,
based on spatial, perceptional, or functional relationships, as suggested in [70].
A stochastic game M is fully observable when each agent i € D is able to
perceive the true state s; and, thus, all other agents j # ¢ and their respective
actions a;; at every time step t. In such fully observable games, we assume
N.; = D — {i}. However, the reverse statement does not hold, as N, =
D — {i} does not necessarily imply that the game is fully observable, e.g.,
as in the Coin environment described in Section 5.1.2. Note that despite the
reward function R depending on the true state s;, each agent ¢ € D only
perceives its corresponding output r; ; without explicit access or knowledge of
R. Furthermore, agents cannot uniquely deduce the full joint action from the
obtained rewards in general.

m; is evaluated with a value function V" (s;) = Ex[Gy,|s¢] for all s, € S,
where Gt ; = Z;’;O fykrt+k7i is the individual and discounted return of agent &
with discount factor v € [0,1) and m = (m;)jep is the joint policy of the MAS.
In practice, the global state s; is not directly observable for any agent ¢ such
that V™ is approximated with local information, i.e., 7¢ ; instead [27, 31, 37, 42].

We define the efficiency of a MAS or utilitarian metric (U ) by the sum of
all individual rewards until time step T

U=> R (1)

i€D

where R; = ZtT:_Ol i is the undiscounted return or sum of rewards of agent
1 starting from initial state sg. i

The goal of agent i is to find a best response m} with V" = V* =
MaTy, ‘/z.<7r””7r"”> for all s; € S, where 7_; is the joint policy without agent 7. A
Nash equilibrium is a solution concept where all local policies are best responses
m; to each other such that no agent can improve its value by deviating from
its policy [4, 48, 64]. In SDs and SSDs, Nash equilibria do not maximize the
efficiency (U) of a MAS; therefore, individually rational agents generally fail
to learn cooperative behavior [3, 4, 11, 17, 31].

2.2 Multi-Agent Reinforcement Learning

We focus on decentralized or independent learning, where each agent ¢ opti-
mizes its policy m; based on local information like 7, at;, 74, 2441, (and
optionally information obtained from its neighborhood N, ;) using reinforce-
ment learning (RL) techniques, e.g., policy gradient methods as explained in
Section 2.3 [17, 61, 70]. Naive (independent) learning induces non-stationarity
due to simultaneously adapting agents, which continuously changes the envi-
ronment dynamics [23, 30, 34]. Therefore, naive learning can lead to overly
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greedy and exploitative policies which defect from any cooperative behavior
[17, 31].

2.3 Policy Gradient Reinforcement Learning

Policy gradient RL is a popular approach to approximate best responses 7 for
each agent 7 [17, 36, 69]. A function approximator #; g, ~ 7} with parameter
vector 0; is trained using gradient ascent on an estimate of J = E.[Go ] [68].
Most policy gradient methods use gradients g of the following form [60]:

9= (Gri — bi(s¢)) Vg, loghip, (ar,i|Te,i)- (2)
where b;(s;) is some state-dependent baseline. In practice, b;(s:) is replaced
by a value function approximation V; ., (1.;) ~ V;*(s;), which is learned with
parameter vector w; [17]. For simplicity, we omit the parameter indices 6;, w;
and write 7;, Vl instead.

3 Related Work

3.1 Multi-Agent Reinforcement Learning in Social
Dilemmas

MARL is a long standing research field with rapid progress and success in
challenging domains [8, 34, 61, 66]. Different studies have been conducted
on various complex SSDs, where interesting phenomena like group hunting,
attacking and dodging, or flocking have been observed [20, 21, 29, 31, 42, 49].
Independent MARL, like naive learning, has been widely used in most studies
to model agents with individual rationality [17, 61].

3.2 Non-Stationarity in Multi-Agent Reinforcement
Learning

Non-stationarity is one reason why naively learning agents fail to cooperate in
SDs [8, 23, 30, 34, 61]. To mitigate this issue, different learning rates can be
used depending on the outcome [7, 38, 67]. Another approach is to incorpo-
rate "opponent awareness” into the learning rule by using or approximating
other agents’ gradients [17, 33]. For that, the objectives and histories of other
agents need to be known, thus requiring full observability. Furthermore, higher
order derivatives (at least second order) are required which is computation-
ally expensive for function approximators with many learnable parameters like
deep neural networks.

3.3 Peer-Incentivization

PI approaches have been introduced recently to encourage cooperative behav-
ior in a distributed fashion via additional rewards. Multi-agent Gifting has
been proposed in [37], which extends the action space of each agent ¢ with a
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gifting action to give a positive reward to other agents j € N, ;. Learning to
Incentivize Other learning agents (LIO) is a related approach, which learns
an incentive function for each agent ¢ that conditions on the joint action of
all other agents j # ¢ (thus assuming full observability) in order to compute
nonnegative incentive rewards for them [69]. Both Gifting and LIO are unidi-
rectional PI approaches, where agents have neither the ability to respond nor
to penalize each other.

3.4 Peer-Incentivization with Global Information

A market-based PI approach was devised in [52, 53], where the action space
is extended by joint market actions to enable bilateral agreements between
agents. A central market function is required, which redistributes rewards
depending on selling-buying relationships. This approach is intractable for
large and complex scenarios because of the exponential growth of the individual
action space since each agent has to decide on a joint market action addi-
tionally. Furthermore, this approach does not enable penalization of agents.
Another approach based on public sanctioning has been proposed in [65].
Agents can reward or penalize each other, which is made public to all other
agents. Learning is conditioned on these public sanctioning events, and agents
can decide, based on known group behavior patterns, whether to reward or to
penalize other agents’ behavior.

3.5 Reciprocity

Strategies based on reciprocity are able to establish stable cooperation in SDs,
i.e., where social welfare is maintained over time without deterioration, known
as the tragedy of the commons [42], by adequately responding to other agents’
actions [3, 4, 11, 48]. Tit-for-Tat (TFT) is a well-known reciprocal strategy
for repeated 2-player games, which cooperates in the first time step and then
imitates the last action of the other agent [48]. TFT is able to achieve and main-
tain mutual cooperation in simple games like the Iterated Prisoner’s Dilemma
while being able to defend itself against exploitation based on the following
characteristics [3, 4]:

® Niceness: Never be the first to defect.

Retaliation: Respond with defection after the other agent defected.
Forgiveness: Resume cooperation after the other agent cooperated, regard-
less of any prior defection.

Clarity: Be clear and recognizable.

Direct reciprocity (DR) is an analogous approach to TFT in evolutionary set-
tings [63]. Agents in a population can choose either to cooperate or defect
based on previous interactions and the probability of future interactions. How-
ever, TFT and DR require full observability of other agents’ actions and a clear
notion of cooperation and defection, which can only be assumed for simple
games [31, 42].
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4 Mutual Acknowledgment Token Exchange
(MATE)

We assume a decentralized MARL setting as formulated in Algorithm 1, where
at every time step ¢ each agent ¢ with history 7 ;, policy approximation 7;, and
value function approximation V; observes its neighborhood N; ; and executes
an action ay; ~ m;(as;|™,;) in state s;. After all actions a; € A have been
executed, the environment transitions into a new state siy1 ~ P(Se11]8¢, @),
which is observed by each agent i through reward r;; and observation 241 ;.
All agents collect their respective experience tuple e,; = (Tii, Gt iy Ttis Z141,4)
for PI [37, 52, 69] and independent adaptation of #; and V; [17, 31, 42]. Note
that in our decentralized setting, each agent only stores its own information
in e;; in general without considering other agents’ actions, observations, or
rewards (unless that information is explicitly part of the observation, e.g., as
in the Prisoner’s Dilemma described in Section 5.1.1). The neighborhoods J\/'“
are not stored in the experience tuples e;; because they are only used for
communication and not for updating the policy or value function parameters.

Algorithm 1 Multi-Agent Reinforcement Learning with MATE

1: Initialize parameters for #; and V; for all agents i € D.
2: for episode m < 1, F do

3: Sample so and set 1y ; for all agents i € D

4 for time step t < 0,7 — 1 do

5: for agent ¢ € D do > Decision making in parallel
6: Observe neighborhood N ;

7 Qg5 ~ ﬁi(at,ih—t,i)

8 end for

9 a; < (at;)ieD

10: Execute joint action a;

11: (re.i)iep < R(se, ar)

12: St41 ~ P(st41]8t, ar)

13: <Zt+1,i>i€D — Q(se41)

14: for agent ¢ € D do > Communication in parallel
15: €ti < <Tt,i7at,i,7't,ivzt+1,i>

16: PMATE « MATE(MI;, Vi, Ny i, ey ee) (See Algorithm 2)

17: €t <Tt’i, Q. i, f%ATE, Zt+1,i>

18: Update 7 ; to 7441, and store ey

19: end for
20: end for
21: for agent i € D do > Update in parallel
22: Update 7; and V; via RL using all e; ; of episode m
23: end for

24: end for
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4.1 Monotonic Improvement

After obtaining their respective experience tuples e; ;, all agents can estimate
the quality of their own situations by using a monotonic improvement measure
MIe,, ¥, or MI; for short based on local information, i.e., rewards r; ;, histories
Tt,is and messages exchanged with other agents j € Ny ;. Given some arbitrary
reward 7 ;, which could either be the original environmental reward 7. ; or
some shaped reward, agent ¢ can assume a monotonic improvement of its own
situation when MI;(#, ;) > 0. Note that we consider the case of MI;(#;;) =0
as a monotonic improvement, in particular, to encourage agents to maintain
their cooperative behavior instead of falling back to defective strategies.

MI; represents a heuristic quality measure to predict if an agent ¢ can
rely on its environment represented by other agents j € N;; without losing
performance. Since MI; can be measured online, agent 7 is able to reciprocate
at any time step ¢ by either encouraging other agents j to reinforce their
behavior if MI;(#; ;) > 0 or by discouraging them if MI; (7, ;) < 0.

In this paper, we regard a reward-based and a temporal difference (TD)-
based approach to compute MI;.

The reward-based approach computes MI; = MI;°" as follows:

ML (Fy ) = e — Tig (3)
where 7;; = 1 Z_:lo 71i is the average of all (shaped) rewards before time
step t. MI* estimates the expected short-term quality of agent i’s situation,
i.e., how 7 ; compares to all rewards obtained so far. In case of uninformative
rewards, e.g., #; = 0, the reward-based measure MI;*" can lead to misleading
assessments since the underlying states may contribute to sparse or delayed

rewards that are not considered at this point yet.
The TD-based approach computes MI; = MIZ»T D as follows:

MITP(fy3) = i + 'Y‘A/i(Tt-ﬁ—Li) - Vi(Ttai) )

which corresponds to the TD residual w.r.t. some arbitrary reward #;; and
estimates the expected long-term quality of agent i’s situation, i.e., how 7 ;
and 7441 ; improve or degrade the situation of agent ¢ w.r.t. future time steps
[568, 59]. Note that even uninformative rewards, e.g., 7 ; = 0, can lead to infor-
mative values MIiT b (71,;) # 0, given an adequate value function approximation
I7i, which requires sufficient exploration by all agents.

Both MI7* and MI!” only depend on local information like the reward
7t.4, the value function approximation Vi, or the experience tuple ¢; ;, and thus
enable efficient online estimation at every time step.

4.2 MATE Protocol and Reward

MATE defines a two-phase communication protocol consisting of a request
phase and a response phase, as shown in Fig. 1.
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In the request phase (Fig. 1a), each agent i evaluates its current situation
with its original reward ry,. If MI;(r:;) > 0, the agent sends a token z; =
Ttoken > 0 as an acknowledgment request to all neighbor agents j € Ny ;, which
can be interpreted as a reward. We assume all tokens to have a fixed value
Tioken, Which can be set specifically for particular domains. The request phase
may be viewed as an opportunity to ”thank” other agents for supporting one’s
own monotonic improvement, which is common practice in human society. Note
that the fixed token value z;yke, does not directly reveal an agent’s objective
or value function.

In the response phase (Fig. 1b), all request receiving agents j € Ny ; check if
the request token x; is sufficient to monotonically improve their own situation
along with their respective original reward r; ;. If MI;(ry; + ;) > 0, then
agent j accepts the request with a positive response token y; = +x;, which
establishes a mutual acknowledgment between agent ¢ and j for time step t.
However, if MI;(ry ;+x;) < 0, then agent j rejects the request with a negative
response token y; = —x; because the received request token x; is not sufficient
to preserve or to compensate for the situation of agent j.

After both communication phases, the shaped reward f%ATE for each agent
1 is computed as follows:

~MATE N ~
Tt,i =Tt + Treq + Tres

5
= rei + maz{(z;)jen, . } + min{(y;)jen, .} ®)
where 7roq = maz{(z;)jen,,} € {0, Ttoken} is the aggregation of all received
requests x; and Tres = min{(y;)jen, .} € {—Tiokens 0, Tioken} is the aggrega-
tion of all received responses y;. When 7,4 4 7res = 0 for all time steps ¢, then
agent 7 would adapt like a naive learner. Although 7., and 7., could be for-
mulated as summation over all requests or responses, respectively, we prefer
mazx and min aggregation to prevent single neighbor agents from being ”voted
out” by all other agents in N; ;. For example, if only a single neighbor agent
responded with a negative token, a linear summation would weigh the posi-
tive responses more than the single negative case, therefore accepting isolated
cases of dissatisfaction, which can spread in later iterations and consequently
destabilize overall cooperation [3, 4, 11]. Thus, our reward formulation can
push the interaction towards stable cooperation and fairness in a completely
decentralized way. Furthermore, the maxz and min operators keep the reward
f%ATE bounded within [ ; —Ztoken, 7't,i +2% token] Which can alleviate undesired
exploitation of the PI mechanism, e.g., by becoming ”lazy” to avoid harming
other agents while getting rewarded or by deviating from the protocol such
that only positive rewards are used for learning, e.g., by ignoring responses.
The complete formulation of MATE at time step ¢ for any agent ¢ is given
in Algorithm 2. MI; is a measure for estimating the individual monotonic
improvement, VZ is the approximated value function, ./\/‘“ is the current neigh-
borhood, 7 ; is the history, and e;; is the experience tuple obtained at time
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step t. MATE computes and returns the shaped reward f%ATE (Eq. 4.2), which

can be used to update 7; and V; according to line 22 in Algorithm 1.

Algorithm 2 Mutual Acknowledgment Token Exchange (MATE)
procedure MATE(MI;, VZ—,/\ftﬂ-, Tt,is €ti)

1:

2 Preg < 0, Fres < 0

3 if MI;(r;;) > 0 then

4 Send acknowledgment request x; = Tyopen to all j € -/\fm

5: end if

6 for neighbor agent j € N;; do > Respond to requests
7 if request x; received from j then

8 Treq <= MAL{Treq, T}

9: if MIi(r¢; + ;) > 0 then

10: Send response y; = +x; to agent j

11: else

12: Send response y; = —x; to agent j

13: end if

14: end if

15: end for

16: if MI;(r;;) > 0 then > If requests have been sent before
17: Tres < 1

18: for neighbor agent j € N;; do > Receive responses
19: if response y; received from j then

20: Tres <= MiN{ T res, Y; }

21: end if

22: end for

23: end if

24: return 7y ; + freq + Tres (P%ATE as defined in Eq. 4.2)

25: end procedure

4.3 Conceptual Discussion of MATE
4.3.1 Practicability

MATE aims to incentivize all agents to learn cooperative behavior with a
decentralized two-phase communication protocol. Agents using MATE com-
pletely rely on local information, i.e., their own value function approximation
VZ—, their own experience tuples e;;, and messages exchanged within their
local neighborhood N;; thus do not require knowledge about other agent’s
objectives, or central instances like market functions or public information,
as suggested in [17, 33, 36, 52, 65]. Locality of information is more practica-
ble in real-world scenarios as global communication is typically expensive or
infeasible, and disturbances mainly occur locally and, therefore, should not
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affect the whole MAS [62]. As mentioned above, MATE does not directly
reveal an agent’s objective due to merely exchanging acknowledgment tokens
Zioken instead of actual environment rewards r; ;, learned values ‘A/i(Tm), or TD
residuals. This can be useful for open scenarios like ad-hoc teamwork or IoT
settings, where arbitrary agents can join the system without revealing any pri-
vate information or depending on central instances [6, 57]. Since MATE only
modifies the environment reward for independent learning, our approach does
not depend on any particular RL or distributed optimization algorithm.

4.3.2 Reciprocity

In contrast to Gifting and LIO, MATE ensures reward-level reciprocity in order
to achieve and maintain emergent cooperation. While behavioral adaptation
through RL is generally slow [22], MATE is able to respond immediately using
rewards or penalties. Therefore, MATE exhibits the characteristics listed in

Section 3.5 given that all agents use #/447¥ according to Eq. 4.2 for adaptation:

® Niceness: The request phase of MATE only uses positive rewards Togen > 0
and thus never defects first at the reward level.

¢ Retaliation: MATE enables penalization of other agents by explicitly
rejecting acknowledgment requests when MI; (ry ; +Zioken) < 0, which has an
immediate negative effect on the requesting agent’s reward, i.e., the response
term 7o = min{(y;)jen, .} in Eq. 4.2.

¢ Forgiveness: MATE does not keep track of previous penalizations therefore
being able to respond positively to any request as long as MI; (1 ; +Ztoken) >
0.

¢ Clarity: MATE, according to Fig. 1 and Algorithm 2, defines a simple and
easily recognizable communication protocol.

In contrast to TFT and DR, as described in Section 3.5, MATE is devised
for general stochastic games; thus, neither assumes full observability of other
agents’ actions nor a clear notion of cooperation and defection, which is not
trivial in complex domains [31, 42]. Instead, MATE uses MI; to evaluate its
local surroundings for adequate responses on the reward-level. Thus, MATE
can be regarded as a reciprocal approach to self-interested MARL at a larger
scale than TFT or DR.

4.3.3 Acknowledgment Tokens

In this paper, we focus on fixed token values xiogen to simplify evaluation and
to focus on the main aspects of our approach, like [37]. The choice of Ztogen
determines the degree of reciprocity by defining the reward and penalty scale.
If Tiogen is smaller than the highest positive reward, then agents might not be
sufficiently incentivized for cooperation. However, if x4,k significantly exceeds
the highest domain penalty, then single agents may learn to ”bribe” all other
agents, thus leading to imbalance. In Section 6.4, we evaluate the sensitivity of
MATE w.r.t. the choice of Ziopen in different domains. An adaptation of Ziopen
to more flexible values, like in LIO [69], is left for future work. We note that
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agent-wise adaption of xippen, as discussed later in Section 7.3, might affect
clarity according to Section 4.3.2, though.

4.3.4 Complexity

MATE scales with O(4(N — 1)) in the worst case according to Algorithm 2, if
Nii = D —{i} and MI;(r;) > 0 for all agents. In this particular setting, all
agents would send N — 1 requests, receive N — 1 requests, respond positively
to these requests, and receive N — 1 positive responses. Other PI approaches
like LIO or Gifting have a worst-case scaling of O(2(N — 1)) for sending and
receiving rewards because they lack a response phase. Since MATE scales
linearly w.r.t. N, it can still be considered feasible compared to alternative
PI approaches, which scale exponentially [52]. Furthermore, the neighborhood
size is typically |[NV:;| < N in practice such that the worst-case complexity
becomes negligible in most cases.

5 Experimental Setup

5.1 Evaluation Domains

We implemented three SD domains based on previous work [17, 37, 42]. At
every time step, the order of agent actions is randomized to resolve conflicts,
e.g., when multiple agents step on a coin or tag each other simultaneously.
For all domains, we measure the degree of cooperation by the efficiency (U)
according to Eq. 2.1. Further details are in Appendix A. Our code is available
at https://github.com/thomyphan/emergent-cooperation.

5.1.1 Iterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma (IPD) is a repeatedly played version of the 2-
player Prisoner’s Dilemma with the payoff table shown in Fig. 3a. Both agents
observe the previous joint action z;; = a;—1 at every time step ¢, which is the
zero vector at the initial time step. The Nash equilibrium is to always defect
(DD) with an average efficiency of U = —2—2 = —4 per time step. Cooperative
policies are able to achieve higher efficiency up to U = —1 — 1 = —2 per
time step. An episode consists of 150 iterations and we set v = 0.95. The
neighborhood N;; = {j} is defined by the other agent j # i. The Prisoner’s
Dilemma is a stateless yet fully observable game since both agents are able
to perceive each other’s actions according to Section 2.1 and remember them
throughout the IPD [3, 4, 11, 48, 63]. We use IPD for proof-of-concept to
demonstrate that MATE can easily achieve mutual cooperation in a simple
SD with a known Nash Equilibrium and a known global optimum.

5.1.2 Coin

Coin[N] is an SSD as shown in Fig. 2a and consists of N € {2,4} agents with
different colors, which start at random positions and have to collect a coin with
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a random color and a random position [17, 32]. If an agent collects a coin, it
receives a reward of +1. However, if the coin has a different color than the col-
lecting agent, another agent with the actual matching color is penalized with
-2. After being collected, the coin respawns randomly with a new random color.
All agents can observe the whole field and are able to move north, south, west,
and east. An agent is only able to determine if a coin has the same or a differ-
ent color than itself, but it is unable to distinguish anything further between
colors. An episode terminates after 150 time steps and we set v = 0.95. The
neighborhood N ; = D —{i} is defined by all other agents j # 4. In addition to
the efficiency, which assesses the overall number of matching coin collections,
we measure the “own coin” rate P(own coin) = % COlle;teadllczoizicﬂshcfgge color
based on the coins collected by each agent, to assess if and how agents refrain
from collecting other agents’ coins. Despite N; ; = D—{i}, our Coin[N] version
is partially observable in general because agents cannot distinguish between
other agents’ colors. We use Coin[N] as an environment with global communi-
cation and negative rewards for particular agents, in contrast to non-penalizing
environments like Cleanup, to assess stable cooperation and avoid bias in our
evaluation, in contrast to [25, 37, 42, 69]. Note that the rewards depend on the
color of each agent, according to Fig. 2ab, and can differ depending on which
agent collected a certain coin [17, 32, 45].

5.1.3 Harvest

Harvest[N] is an SSD, as shown in Fig. 2b, and consists of N € {6,12} agents
(red circles), which start at random positions and have to collect apples (green
squares). The apple regrowth rate depends on the number of surrounding
apples, where more neighbor apples lead to a higher regrowth rate [42]. If all
apples are harvested, then no apple will grow anymore until the episode termi-
nates. At every time step, all agents receive a time penalty of -0.01. For each
collected apple, an agent receives a reward of +1. All agents have a 7 x 7 field
of view and are able to do nothing, move north, south, west, east, and tag
other agents within their view with a tag beam of width 5 pointed to a specific
cardinal direction. If an agent is tagged, it is unable to act for 25 time steps.
Tagging does not directly penalize the tagged agents nor reward the tagging
agent. An episode terminates after 250 time steps and we set v = 0.99. The
neighborhood N ; is defined by all other agents j # i being in sight of i. In
addition to the efficiency (U), we measure equality (E), sustainability (S), and
peace (P) to analyze the degree of cooperation in more detail [42]:

ZiGD ZjeD |Ri - Rj|
2N Zie’D R; ’

1
S = i ;}Ai, where A; = E[t|r,; > 0],

E=1-
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T
1
P=N-— T ; tz; I[agent timed-out on time step ]
i€D t=

Harvest[N] is a partially observable game because all agents only have a lim-
ited field of view to perceive and communicate with other agents. We use
Harvest[N] to provide a large-scale environment with local communication to
assess scalability and stable cooperation [25, 37, 42].

5.2 MARL Algorithms

We implemented MATE;, as specified in Algorithm 2, with MIiTD (Eq. 4.1) and
MI* (Eq. 4.1), which we refer to as MATE-TD and MATE-rew, respectively,
and set Tiopen, = 1 by default. Our base algorithm is an independent actor-
critic to approximate 7; and V; for each agent 7 according to Eq. 2.3, which
we refer to as Naive Learning [17].

In addition, we implemented LIO [69], the zero-sum and replenishable
budget version of Gifting [37], and a Random baseline.

Due to the high computational demand of LOLA-PG, which requires
the computation of the second-order derivative for deep neural networks, we
directly include the performance as reported in the paper [17] in IPD and
Coin[2] for comparison.

5.3 Neural Network Architectures and Hyperparameters

We implemented 7; and V; for each agent ¢ as a multilayer perceptron (MLP).
Since Coin[N] and Harvest/N] are gridworlds, states and observations are
encoded as multi-channel images, as proposed in [18, 31]. The observations of
IPD are the vector-encoded joint actions of the previous time step [17]. The
multi-channel images of Coin/N] and Harvest[N] were flattened before being
fed into the MLPs of #; and V;. All MLPs have two hidden layers of 64 units
with ELU activation. The output of #; has |A4;| (J4;| + 1 for Gifting) units
with softmax activation. The output of V; consists of a single linear unit. The
incentive function of LIO has a similar architecture with the joint action a;
(excluding a; ;) concatenated with the flattened observations as input and N—1
output units with sigmoid activation. The hyperparameters and architecture
information are listed in Table B1, and further details are in Appendix B.

6 Results

For each experiment, all respective algorithms were run 20 times to report the
average metrics and the 95% confidence interval. The Random baseline was
run 1,000 times to estimate its expected performance for each domain.

6.1 Performance Evaluation

The results for IPD are shown in Fig. 3b. MATE-TD, LIO, and LOLA-PG
achieve the highest average efficiency per step. Both Gifting variants, Naive
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Coin[2] Coin[4]

-2/+1
Red agent defects Red agent cooperates O/ 0

/41 +1/0 \ \/ .4-‘
-0 1-0 %

A ) 5o

(a) Coin

(b) Harvest (layout used for N = 6 and N = 12)

Fig. 2: SSD environments for evaluation: (a) In Coin/N/, each agent gets a
reward of +1 when collecting a coin. However, other agents are penalized with
-2 when the collected coin does not match with the collecting agent’s color.
(b) In Harvest[N], all agents (red circles) need to collect apples (green squares)
while avoiding to be tagged and exhaustion of all apples which would prevent
regrowth of apples.

Learning, and MATE-rew converge to mutual defection, which is significantly
less efficient than Random.

The results for Coin/2] and Coin/4] are shown in Fig. 4. In both scenarios,
MATE-TD is the significantly most efficient approach with the highest ”own
coin” rate. LIO is the second most efficient approach in both scenarios. In
Coin[2], LIO’s efficiency first surpasses LOLA-PG and then decreases to a
similar level. However, the "own coin” rate of LOLA-PG is higher, which
indicates that one LIO agent mostly collects all coins while incentivizing the
other respective agent to move elsewhere. In Coinf/], LIO is more efficient
than Random and achieves a slightly higher ”own coin” rate than the other PI
baselines. MATE-rew is the fourth most efficient approach in Coin/2] (after
LOLA-PG and LIO) and Coinf}] (after Random), but its "own coin” rate
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(b) Efficiency in IPD

Fig. 3: (a) Payoff matrix used in IPD (b) Learning progress of MATE variants,
Gifting variants, Naive Learning, and Random in IPD. The results of LIO and
LOLA-PG are taken from the respective papers [17, 69].

is similar to Random, meaning that one agents learns a more directed policy
to collect more coins than the other but does not distinguish well between
matching and non-matching coins due the short-sighted MI measure, according
to Section 4.1. Both Gifting variants and Naive Learning perform similarly to
Random in Coin[2], where the chance of collecting one’s matching coin is %,
but are significantly less efficient than Random in Coin[/], where each agent
is more likely to be penalized due to any other agent collecting one’s matching
coin with a chance of %.

The results for Harvest[6] and Harvest[12] are shown in Fig. 5 and 6,
respectively. All MARL approaches are more efficient, sustainable, and peace-
ful than Random. In Harvest[6], MATE-TD, LIO, both Gifting variants, and
Naive Learning are similarly efficient and sustainable with similar equality,
while MATE-TD achieves slightly more peace than all other baselines. In Har-
vest[12], MATE-TD achieves the highest efficiency, equality, and sustainability
over time while being the second most peaceful after MATE-rew. Both Gifting
variants are slightly more efficient, sustainable, and peaceful than Naive Learn-

ing in Harvest[12], while LIO is progressing slower than Gifting and Naive
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Fig. 4: Learning progress of MATE variants, LIO, Gifting variants, Naive
Learning, and Random in Coinf2] and Coinf4]. The results of LOLA-PG are
taken from the paper [17].

Learning but eventually surpasses them w.r.t. efficiency, sustainability, and
peace. MATE-rew is the least efficient and sustainable MARL approach, which
exhibits significantly less equality than Random. LIO, both Gifting variants,
and Naive Learning first improve w.r.t. all metrics but then exhibit a gradual
decrease, indicating that agents become more aggressive and tag each other in
order to harvest all apples alone, which is known as the tragedy of the com-
mons [37, 42]. However, MATE-TD remains stable w.r.t. efficiency, equality,
and sustainability in Harvest[12], being able to maintain its high cooperation
levels without any deterioration over time, indicating that MATE-TD is able
to avoid the tragedy of the commons.

6.2 Robustness against Anomalous Protocol Deviation

To evaluate the robustness of MATE-TD against anomalous protocol devi-
ation, we introduce an anomalous agent f € D which deviates from the
communication protocol defined in Algorithm 2 and Fig. 1 in one of the
following ways:
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Fig. 5: Learning progress of MATE variants, LIO, Gifting variants, Naive
Learning, and Random in Harvest[6].

® Complete: The anomalous agent becomes a naive independent learner
which does not participate in the communication rounds by skipping lines
16 and 17 in Algorithm 1. Thus, the anomalous agent f simply learns
with its original reward 7y y. This anomalous MATE variant lacks niceness,
retaliation, and forgiveness according to Section 4.3.2.

® Request: The anomalous agent f does not send any acknowledgment
requests by skipping line 4 in Algorithm 2 and receives no responses in
return. However, it can still receive requests from other agents j € Ny ;
and respond to them. Thus, the anomalous agent’s reward is defined by
f%cATE =7t f+Treq = T, g +maz{(x;) en, ; - This anomalous MATE variant
lacks niceness according to Section 4.3.2.

® Response: The anomalous agent f can send acknowledgment requests but
ignores all responses by skipping lines 17-22 in Algorithm 2. In addition,
it can receive requests from other agents j € Ay s and respond to them.
Thus, the anomalous agent’s reward f‘%cATE is the same as in the Request
case above. This anomalous MATE variant does not lack any characteristics
discussed in Section 4.3.2. However, the anomalous agent does not adapt its

policy with the original MATE reward defined in Eq. 4.2.
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Fig. 6: Learning progress of MATE variants, LIO, Gifting variants, Naive
Learning, and Random in Harvest[12].

Note that we focus on variants that avoid penalization by other agents through
the response term 7res = min{(y;)jen,,} of Eq. 4.2. In our experiments, we
use the notation MATE-TD (dev=X ) for the inclusion of an anomalous agent
f using an anomalous MATE variant X € {Complete, Request, Response},
deviating from the standard MATE protocol, as explained above.

The results for Coin/4] are shown in Fig. 7. All anomalous MATE-TD vari-
ants are less efficient than MATE-TD but still more efficient with a higher ”own
coin” rate than Naive Learning. MATE-TD (dev=Complete) exhibits the least
degree of cooperation. MATE-TD (dev=Response) is slightly more efficient
than LIO and achieves a higher "own coin” rate. MATE-TD (dev=Request)
is less efficient than LIO but its "own coin” rate is higher indicating that
agents tend to refrain from collecting other agents’ coins rather than greedily
collecting them.

The results for Harvest[12] are shown in Fig. 8. All anomalous MATE-TD
variants perform similarly to MATE-TD without any loss.

6.3 Robustness against Communication Failures

To evaluate robustness against communication failures, we introduce a proba-
bility or communication failure rate 6 € [0, 1), specifying that each agent can
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fail to send or receive a message with a chance of § at every time step ¢. In
particular, any of the following communication procedures from Algorithm 2
can be skipped with a probability of §, where each message exchange between
two agents can fail independently of all other exchanges:

Sending an acknowledgement request, according to line 4.

Receiving an acknowledgement request, according to lines 7-14.

Sending an acknowledgement response, according to lines 9-13. Note that if
a request is not received, then no response is sent. However if a request is
successfully received, sending a response may still fail with a chance of 4.

® Receiving an acknowledgement response, according to lines 18-21.

We evaluate the final performance of MATE-TD and LIO at the
end of training respectively w.r.t. communication failure rates of § €
{0,0.1,0.2,0.4,0.8} in Coin/4] and Harvest[12]. According to the correspond-
ing neighborhood definitions in Section 5.1, communication in Coin/4] is global,
where all-to-all communication is possible, while communication in Harvest[12]
is local for MATE-TD, where all agents can only communicate with neighbor
agents that are in their respective 7 x 7 field of view. LIO always uses global
communication due to its incentive function formulation [69]. In addition, we
compare with Naive Learning and Random as non-communicating baselines.

The results for Coinf4] are shown in Fig. 9. MATE-TD and LIO remain
more efficient and cooperative than Naive Learning despite both approaches
losing performance with increasing §. The average efficiency of MATE-TD is
always nonnegative, while the efficiency of LIO decreases below the level of
Random, when § = 0.8. The average ”own coin” rate of MATE-TD is always
at least 0.5, while the average "own coin” rate of LIO has a high variance
ranging from 0.3 to 0.4. However, when § = 0.8, the average "own coin” rate
of LIO is slightly above 0.3 with significantly less variance, while still being
higher than the ”own coin” rates of Naive Learning and Random.

The results for Harvest[12] are shown in Fig. 10. The performance of
MATE-TD is relatively robust for § > 0.4 but significantly drops when § = 0.8.
However, MATE-TD still achieves the highest degree of cooperation w.r.t. all
metrics except equality which gets worse than Random when § = 0.8. The
cooperation level of LIO decreases slightly w.r.t. § and is higher than Random
except for equality which even falls below the level of Naive Learning when
6 <0.4.

6.4 Sensitivity to Token Values

To evaluate the sensitivity of MATE-TD w.r.t. the choice of Z;ogen, we conduct
experiments with zogen € {0.25,0.5,1,2,4}. Setting ;pken, = 0 would reduce
MATE to Naive Learning.

We report both the learning progress and the final performance at the
end of training to assess stability and the relationship between z;oren and the
cooperation metrics explained in Section 5.1.
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Fig. 9: Performance of MATE, LIO, Naive Learning, and Random in Coin/{/
after 5,000 epochs w.r.t. different communication failure rates.
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Fig. 10: Performance of MATE, LIO, Naive Learning, and Random in Har-
vest[12] after 5,000 epochs w.r.t. different communication failure rates.
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Fig. 11: Learning progress of MATE with ztoken € {0.25,0.5,1,2,4}, LIO,
Naive Learning, and Random in Coin//].
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Fig. 12: Performance of MATE with 2ok, € {0.25,0.5,1,2,4}, LIO, Naive
Learning, and Random in Coin/4] after 5,000 epochs.

The results for Coinf{] are shown in Fig. 11 and 12. MATE-TD with
Ttoken = 1 is the most efficient variant, achieving the highest ”own coin” rate.
MATE-TD is less efficient than LIO and Random when ke, 7 1. However,
MATE-TD with @tpen € {0.5,2} is able to achieve a higher ”own coin” rate
than LIO and Random. MATE-TD is always more efficient with a higher ”own
coin” rate than Naive Learning.

The results for Harvest[12] are shown in Fig. 13 and 14. All MATE-TD
variants progress stably w.r.t. efficiency and sustainability without any dete-
rioration over time. MATE-TD achieves the highest efficiency, equality, and
sustainability with Zsogen € {0.5,1,2} and is always the most peaceful variant
for any Tioken- When xyppen = 0.25, MATE-TD is less efficient and sustainable
than LIO, while achieving less equality than LIO, Naive Learning, and Ran-
dom. MATE-TD with x;o5en = 4 also achieves less equality than LIO, Naive
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Fig. 13: Learning progress of MATE with ztoken € {0.25,0.5,1,2,4}, LIO,
Naive Learning, and Random in Harvest[12].

Learning, and Random but is more efficient, sustainable, and peaceful. MATE-
TD achieves the highest degree of peace when token € {0.25,4} with notably
high variance in all other metrics.

7 Discussion

7.1 Experimental Results

Our results show that MATE is able to achieve and maintain significantly
higher levels of cooperation than previous PI approaches in SSDs like Coin/2],
Coin[4], and Harvest[12]. Especially Harvest[12] emphasizes the capabil-
ity of MATE to establish stable cooperation in a completely decentralized
way despite the increased social pressure compared to Harvest[6], where all
alternative PI approaches easily learn to cooperate.

Estimating the monotonic short-term quality via MI“’ (Eq. 4.1) can be
beneficial compared to random acting and to some extent to naive learning in
Coin[2] (Fig. 4). However, MI;*” cannot consider long-term effects, which is
detrimental for sparse or delayed reward settings, where individual situations
are assessed misleadingly and therefore lead to less cooperative behavior than
possible. Considering the monotonic long-term quality via M[iT D (Bq. 4.1)
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Fig. 14: Performance of MATE with 2ok, € {0.25,0.5,1,2,4}, LIO, Naive
Learning, and Random in Harvest[12] after 5,000 epochs.

leads to significantly higher efficiency and cooperation w.r.t. various metrics
in all domains, except peace in Harvest[12]. MATE with MI'” is able to avoid
the tragedy of the commons by stably maintaining cooperative behavior, in
contrast to other approaches which become unstable and fall back to more
defective strategies as observed in Coin/2], Coinf4}], and Harvest[12] (Fig. 4
and 6), where the cooperation levels deteriorate over time.

MATE is not affected by anomalous MATE protocol variants in Har-
vest[12], where agents only communicate locally, while the cooperation level
significantly decreases in Coinf[/], where any deviation from the protocol can
affect the whole MAS due to global communication (Fig. 7 and 8). The
anomalous MATE variants in Coin[4] emphasize the importance of appropri-
ate penalization mechanisms as proposed in our reward formulation in Eq.
4.2 for immediate retaliation according to Section 4.3.2 and [3, 4, 11]. Nice-
ness through initiation of the MATE protocol according to Section 3.5 is also
important as anomalous MATE variants using the strategy Response lead to
superior cooperation in Coinf// than variants using Request. Forgiveness is
always implicitly assumed except for the anomalous MATE variant Complete,
which leads to the least cooperative behavior in Coin/f{].

MATE shows some robustness against communication failures in Fig. 9
and 10, where it is able to maintain its superior cooperation level even when
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communication fails with a probability of 80%. The difference in cooperation
compared to LIO is especially evident in Harvest[12], where MATE only uses
local communication w.r.t. the agents’ local neighborhoods A, ;. In this case,
local failures with a rate of ¢ < 40% do not affect the whole MAS, in contrast
to Coinf4], where the cooperation level already drops when § > 10%. Unlike
MATE, LIO already deteriorates with much lower communication failure rates
in Harvest[12] due to its dependence on global communication.

Tioken 1S a key hyperparameter of MATE since it defines the reward and
penalty scale, which determines the degree of reciprocity in the system. As
noted in Section 4.3.3, setting Zioren to the highest positive reward yields
the best results w.r.t. most metrics, as shown in Fig. 11-14, except for peace
in Harvest{12]. MATE is very sensitive w.r.t. the choice of Ztopen in Coinf4],
where only Zsoren, = 1 leads to the highest level of cooperation. The lower
Tioken, the more often agents tend to defect similarly to naive learning. On
the other hand, if xiopen, > 1, then a single agent often manages to ”bribe”
all other agents to move elsewhere in order to collect the coin on its own.
In Harvest[12], MATE is more robust w.r.t. choice of Zioken, a8 any Tioken €
{0.5,1,2} leads to higher levels of cooperation than alternative approaches.
However, setting x;oken = 0.25 leads to the least degree of cooperation w.r.t.
efficiency, equality, and sustainability. As indicated by the sustainability metric
in Fig. 14c, low values of Z;oken can lead to a greedy collection of apples,
since agents cannot compensate each other for backing off. However, when
Ttoken > 2, then most agents are not sufficiently incentivized to collect apples
anymore since rewarding each other via MATE for ”doing nothing” is more
profitable if N;; # (. The equality and sustainability results in Fig. 14b-c
indicate that only agents with \V; ; = () tend to greedily collect apples since they
cannot be rewarded by the MATE protocol. Therefore, the range of appropriate
values for x;oken also depends on each agent’s neighborhood in addition to the
scale of the highest positive reward.

7.2 Limitations

Budget Balance

Similar to many PI approaches [52, 65, 69], MATE is not budget-balanced, i.e.,
the rewards generated through PI are not subtracted from the incentivizing
agents’ reward, which artificially increases the overall reward circulation in the
MAS, thus fundamentally changing the game [3, 4, 11, 48]. However, in contrast
to other PI approaches, where rewards are aggregated via summation [52, 69],
MATE reduces the effect of reward imbalance via max/min aggregation of
tokens, according to Eq. 4.2, which restricts the potential worst-case imbalance
in the MAS to 2NZoren at most, instead of N2Zyoren (the factor 2 accounts
for the two-phase protocol of MATE).

Reward Currency

In our setting, all agents share the same currency, e.g., when collecting a coin
or apple in Coin[/N] or Harvest[N], respectively, which always yields a reward
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of +1 for the collecting agent. If agents had different currencies, i.e., valued
certain events differently, then individual token values and a (decentralized)
currency conversion mechanism would be needed [3, 4, 11, 48].

Synchronous Communication

Similar to most PT approaches [25, 37, 52, 53, 69], MATE assumes synchronous
communication per time step, which is not perfectly realistic due to latencies
based on communication distances, channels, and disturbances [56, 62]. Asyn-
chronous communication could affect the learning progress and may require an
additional memory for exchanged tokens in addition to the action-observation
history 7;; to explicitly learn the temporal relationship between tokens, other
agents’ behavior, and environmental dynamics.

Neighborhood Definitions

So far, we assumed predefined neighborhoods based on the spatial perception
ranges, which is a reasonable assumption in most spatio-temporal domains
[45, 70], where sensors and communication ranges are limited. However, we
did not study the impact of varying neighborhood sizes systematically, which
could affect the efficiency and robustness of MATE in addition to the token
value definition, as mentioned in Section 6.4. Furthermore, we assumed homo-
geneity, where all agents have the same perception and communication range.
An interesting direction for future work would be the evaluation of different
neighborhood definitions, based on individual perception ranges, noisy sensors,
and functional relationships, i.e., where agents can only perceive certain types
of other agents.

Predefined Token Values

As discussed in Section 4.3.3 and experimentally evaluated in Section 6.4, the
choice of token value x,key, is crucial for the ability of MATE to achieve stable
cooperation. While a default token value of xioken, = 1 has been empirically
shown to work well for standard benchmark environments [37, 45, 52, 53],
any change in the environment, neighborhood definition, or reward scale could
render the default choice ineffective. In the following Section 7.3, we will discuss
the challenges and prospects of adaptive token values, which could mitigate
the issues of predefined token values.

7.3 Challenges and Prospects on Adaptive Token Values

In cases where the reward function is not known a priori, the token value
Tioken NEeds to be learned and adapted with online experience. In addition to
learning an adequate value for Tipken, all agents need to synchronize on the
same token value to avoid ”bribery” or inequality of rewards, e.g., where one
agent can send larger token values and, therefore, have a stronger influence
on other agents. This poses a particular challenge in our decentralized SSD
setting since agents generally do not have access to global communication, as
in [25, 52, 69], or centralized instances, as in [26, 53, 65].
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Another challenge is the potential change or drift in rewards, e.g., where
the scale of rewards changes over time due to environmental or perceptional
changes. Such changes require constant adaptation and synchronization.

A centralized way of learning and synchronizing token values can be
implemented with a shared and periodically updated server to record the
environmental rewards observed by all agents. To mitigate the necessity of
constant accessibility for all agents, each agent can locally store its environ-
mental reward to asynchronously update the central server and synchronize
its individual token value, depending on periodic time slots, spatial distance
to the server, or any locally detected change in rewards [26, 39, 65].

A decentralized way of learning and synchronizing token values could be
the employment of consensus algorithms, where agents exchange their individ-
ually estimated mean rewards or token values to jointly agree on a common
token value Zyogen [10]. There exist several consensus algorithms for estimating
common values that are completely decentralized and only require local value
estimation and communication [1, 40, 51, 56]. The consensus approach could
be combined with LIO to learn individual token values per agent in order to
accommodate different reward currencies for more general scenarios [45, 69].

8 Conclusion and Future Work

We presented MATE, a PI approach defined by a two-phase communication
protocol to exchange acknowledgment tokens as incentives to shape indi-
vidual rewards mutually. All agents condition their token transmissions on
the locally estimated quality of their own situations based on environmen-
tal rewards and received tokens. MATE is completely decentralized and only
requires local communication and information without knowledge about other
agents’ objectives or any public information. In addition to rewarding other
agents, MATE enables penalization for reward-level reciprocity by explicitly
rejecting acknowledgment requests, causing an immediate negative effect on
the requesting agent’s reward.

MATE was evaluated in the Iterated Prisoner’s Dilemma, Coin, and
Harvest. We compared the results to other PI approaches w.r.t. different
cooperation metrics showing that MATE is able to achieve and maintain sig-
nificantly higher levels of cooperation than previous PI approaches even in
the presence of social pressure and disturbances like anomalous protocol vari-
ants or communication failures. While being rather sensitive w.r.t. the choice
of token values, MATE always tends to learn more cooperative policies than
naive learning thus being generally a more beneficial choice for self-interested
MARL, when communication is possible to some extent at least.

MATE is suitable for more realistic scenarios, e.g., in ad-hoc teamwork or
IoT settings with private information, where single agents can deviate from the
protocol, e.g., due to malfunctioning or selfishness, and where communication
is not perfectly reliable.
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Future work includes the determination of appropriate bounds w.r.t. the
choice of token values, the automatic adjustment of token values for more flex-
ibility, e.g., by combining LIO and MATE, and an integration of emergent
communication and consensus techniques to create more adaptive and intelli-
gent agents with social capabilities [16, 55]. Furthermore, we want to explore
the impact of neighborhood definitions and sizes to study the influence of cer-
tain agents on the overall cooperation as well as the reciprocal consequences,
e.g., how a change in monotonic improvement by a single agent can cause
neighborhood retaliation and to what extent [44, 46].
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Fig. Al: Coin/2] and Coinf}] as used in the paper.
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Appendix A Evaluation Domain Details

A.1 IPD

An IPD episode consists of 150 iterations similar to [17]. The gifting action
of Gifting is treated as randomly picking C or D to avoid any bias (simply
picking C for gifting has the same effect though).

As a fully observable domain with just one opponent, all PI approaches use
global communication, where each agent exchanges messages with the other
respective agent.

A.2 Coin|[N]

We adopt the setup of [17] in Coin[2] as shown in Fig. A1 with the same rules
and reward functions. In addition, we extend the domain to 4 agents in Coin///
(Fig. A1 right).

Since all agents are able to perceive each other’s positions (albeit not
being able to distinguish agents by color) all PI approaches use global
communication, where each agent exchanges messages with N —1 other agents.

All agents are able to move freely and grid cell positions can be occupied by
multiple agents. Any attempt to move out of bounds is treated as ”do nothing”
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Fig. A2: Domain layout with initial apple configuration used for Harvest[6]
and Harvest[12].

action. The order of executed actions is randomized to resolve situations, where
multiple agents step on a coin simultaneously.

A.3 Harvest[N]

We adopt the setup of [42] in Harvest[6] and Harvest[12] as shown in Fig. A2
with the same dynamics and apple regrowth rates. The initial apple configu-
ration in Fig. A2 is used for both Harvest[6] and Harvest[12] to evaluate all
MARL approaches in the absence and presence of social pressure respectively.

We modify the original reward function by adding a time penalty of 0.01
for each agent at every time step ¢ to increase pressure. All agents are able to
observe the environment around their 7 x 7 area and have no specific orienta-
tion. Thus, each agent has 4 separate actions to tag all neighbor agents which
are either north, south, west, or east of them.

While LIO uses global all-to-all communication in Harvest/N], all MATE
and Gifting variants use local communication, where all agents can only com-
municate with neighbor agents that are in their respective 7 x 7 field of
view.

All agents are able to move freely and grid cell positions can be occupied by
multiple agents. Any attempt to move out of bounds is treated as ”do nothing”
action. The order of executed actions is randomized to resolve situations, where
multiple agents attempt to collect an apple or tag each other simultaneously.

Appendix B Technical Details

B.1 Hyperparameters

All common hyperparameters used by all MARL approaches in the experi-
ments, as reported in Section 6, are listed in Table B1. The final values are
chosen based on a coarse grid search to find a tradeoff between performance
and computation for LIO and Naive Learning in Coin[2] and Harvest[6]. We
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directly adopt the final values in Table B1 for all other approaches and domains
from Section 5 and 6.

Similarly to xiopen, = 1, we set the gift reward of both Gifting variants
introduced in Section 5.2 to 1 as originally proposed in [37].

For LIO, we set the cost weight for learning the incentive function to 0.001
and the maximum incentive value R,,,, to the highest absolute penalty per
domain (3 in IPD, 2 in Coin/NJ, and 0.25 in Harvest[N]), as originally proposed
in [69].

B.2 Neural Network Architectures

We coarsely tuned the neural network architectures from Section 5.3 w.r.t.
performance and computation by varying the number of hidden layers {1, 2,
3} as well as the number of units per hidden layer {32, 64, 128} for #; and V.
All MATE variants, Naive Learning, and both Gifting variants use #; and V;
as separate MLPs. The policies 7; of both Gifting variants have an additional
output unit for the gifting action, which is also part of the softmax activation.

The incentive function network of LIO has the same hidden layer architec-
ture as #; and V;. In addition, the joint action of the N — 1 other agents is
concatenated to the flattened observations before being input into the incen-
tive function which outputs an N — 1 dimensional vector. The output vector
is passed through a sigmoid function and multiplied with R4, (Section B.1)
afterwards.

Using ELU or ReLLU activation does not make any significant difference for
any MLP thus we stick to ELU throughout the experiments.
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