
Confidence-Based Curriculum Learning for
Multi-Agent Path Finding

Thomy Phan

University of Southern California

Los Angeles, USA

thomy.phan@usc.edu

Joseph Driscoll

Georgia Institute of Technology

Atlanta, USA

jdriscoll7@gatech.edu

Justin Romberg

Georgia Institute of Technology

Atlanta, USA

jrom@ece.gatech.edu

Sven Koenig

University of Southern California

Los Angeles, USA

skoenig@usc.edu

ABSTRACT
A wide range of real-world applications can be formulated asMulti-

Agent Path Finding (MAPF) problem, where the goal is to find

collision-free paths for multiple agents with individual start and

goal locations. State-of-the-art MAPF solvers are mainly centralized

and depend on global information, which limits their scalability and

flexibility regarding changes or newmaps that would require expen-

sive replanning. Multi-agent reinforcement learning (MARL) offers

an alternative way by learning decentralized policies that can gener-

alize over a variety of maps. While there exist some prior works that

attempt to connect both areas, the proposed techniques are heavily

engineered and very complex due to the integration of many mech-

anisms that limit generality and are expensive to use. We argue that

much simpler and general approaches are needed to bring the areas

of MARL and MAPF closer together with significantly lower costs.

In this paper, we propose Confidence-based Auto-Curriculum for

Team Update Stability (CACTUS) as a lightweight MARL approach

to MAPF. CACTUS defines a simple reverse curriculum scheme,

where the goal of each agent is randomly placed within an alloca-

tion radius around the agent’s start location. The allocation radius

increases gradually as all agents improve, which is assessed by a

confidence-based measure. We evaluate CACTUS in various maps

of different sizes, obstacle densities, and numbers of agents. Our

experiments demonstrate better performance and generalization

capabilities than state-of-the-art MARL approaches with less than

600,000 trainable parameters, which is less than 5% of the neural

network size of current MARL approaches to MAPF.

KEYWORDS
Multi-Agent Path Finding; Multi-Agent Reinforcement Learning;

Curriculum Learning

1 INTRODUCTION
A wide range of real-world applications like goods transportation

in warehouses, search and rescue missions, and traffic management

can be formulated as Multi-Agent Path Finding (MAPF) problem,

where the goal is to find collision-free paths for multiple agents

with individual start and goal locations. Finding optimal solutions

w.r.t. flowtime or makespan is NP-hard [29, 39]. Despite the problem

complexity, there exist a variety of MAPF solvers that find optimal

[32], bounded suboptimal [5], or quick feasible solutions [16]. Most

Evaluate Update

{

completion
rates 

completion
rates 

<

> 

Figure 1: Curriculum update scheme of CACTUS. The agents
(colored circles) are trained and evaluated w.r.t. a goal alloca-
tion radius 𝑅alloc (shaded squares around the agents). When
the average completion rate 𝜇 exceeds the decision threshold
𝑈 with a certain confidence level such that 𝜇 − 𝜂𝜎 ≥ 𝑈 , the
allocation radius 𝑅alloc is incremented by 1.

MAPF solvers are centralized and require global information, which

limits scalability and flexibility regarding changes that would need

expensive replanning. This also limits applicability to partially

observable real-time domains [30].

Multi-agent reinforcement learning (MARL) offers an alternative

way by learning decentralized policies that can generalize over a va-

riety of maps and make decisions under partial observability [4, 44].

State-of-the-art MARL algorithms are based on centralized train-

ing for decentralized execution (CTDE), where training takes place

in a laboratory or a simulator with access to global information

to learn coordinated policies that can be executed independently

under partially observability afterwards [18, 28].

MAPF and MARL have been very active research areas in the

last few years with impressive advances on both sides, resulting in

a variety of sophisticated algorithms [5, 14, 17, 46]. Despite these

advances, both fields have been mainly studied independently of

each other. However, MARL could benefit MAPF in various ways:

(1) Efficiency: The learned policies are reactive and decentral-

ized therefore alleviating the computational and communi-

cation requirements of centralized MAPF solvers [28].

(2) Generalization: The learned policies can generalize over a

variety of maps thus do not require complete retraining or

replanning when being used on new maps [30].

(3) Robustness: The learned policies make decisions based on

actual observations therefore being able to react to local

changes, i.e., emerging obstacles or new paths, without re-

quiring replanning of the whole system [24].



On the other hand, MAPF poses an exciting challenge for MARL

due to its practical relevance and the following aspects [32, 34]:

(1) Sparse Rewards: MAPF represents a complex navigation

problem, where all agents are only rewarded for reaching

their goals. Naive MARL would need exhaustive exploration

to obtain informative data, which is time-consuming [10].

(2) Dynamic Constraints: Agents are not allowed to collide

therefore having temporal constraints in addition to static

constraints imposed by obstacles and boundaries [34].

(3) Coordination: MAPF requires coordination of spatially

close agents with potentially emergent effects like conges-

tion or circulation. So far, most MARL methods only focus

on coordination on a small scale though [18, 51].

We believe that addressing MAPF via MARL can provide a fruit-

ful research direction that would benefit both areas. While there are

prior works that attempt to connect these areas, the proposed tech-

niques are heavily engineered and very complex, using extremely

large neural networks, extensively shaped rewards, and centralized

MAPF solvers for imitation learning [6, 30, 48]. We argue that much

simpler and general approaches are needed to bring the areas of

MARL and MAPF closer together with significantly lower costs.

In this paper, we propose Confidence-based Auto-Curriculum for

TeamUpdate Stability (CACTUS) as a lightweightMARL approach to

MAPF. CACTUS defines a simple reverse curriculum scheme, where

the goal of each agent is randomly placedwithin an allocation radius

around the agent’s start location. The allocation radius increases

gradually as all agents improve, which is assessed by a confidence-

based measure as shown in Fig. 1. Our contributions are as follows:

• We formulate the MAPF problem as a straightforward sto-

chastic game with automatic collision prevention and sparse

rewards to solve it in a black-box manner, which is more

general and intuitive for standard MARL methods.

• Based on the stochastic game formulation, we propose a

simple reverse curriculum scheme that gradually increases

the potential distance between start and goal locations to

enhance state-of-the-art MARL techniques that would likely

fail to learn any meaningful policy otherwise.

• We evaluate CACTUS in various maps of different sizes, ob-

stacle densities, and numbers of agents. Our experiments

demonstrate better performance and generalization capabili-

ties than state-of-the-art MARL approaches with less than

600,000 trainable parameters, which is less than 5% of the

neural network size of current MARL approaches to MAPF.

2 BACKGROUND
2.1 Multi-Agent Path Finding
We focus on maps as undirected unweighted graphs 𝐺 = ⟨V, E⟩,
where vertex setV contains all possible locations and edge set E
contains all possible transitions or movements between adjacent

locations. An instance 𝐼 consists of a map𝐺 and a set of agents D =

{1, ..., 𝑁 } with each agent 𝑖 ∈ D having a start location 𝑣start,𝑖 ∈ V
and a goal location 𝑣

goal,𝑖 ∈ V . We assume that 𝑣start,𝑖 ≠ 𝑣start, 𝑗 and

𝑣
goal,𝑖 ≠ 𝑣goal, 𝑗 for any agent pair 𝑖, 𝑗 ∈ D with 𝑖 ≠ 𝑗 .

MAPF aims to find collision-free plans for all agents. A plan 𝑃 =

{𝑝1, ..., 𝑝𝑁 } consists of individual paths 𝑝𝑖 = ⟨𝑝𝑖,0, ..., 𝑝𝑖,𝑙 (𝑝𝑖 ) ⟩ per

agent 𝑖 ∈ D, where ⟨𝑝𝑖,𝑡 , 𝑝𝑖,𝑡+1⟩ = ⟨𝑝𝑖,𝑡+1, 𝑝𝑖,𝑡 ⟩ ∈ E, 𝑝𝑖,0 = 𝑣start,𝑖 ,

𝑝𝑖,𝑙 (𝑝𝑖 ) = 𝑣goal,𝑖 , and 𝑙 (𝑝𝑖 ) is the length or travel distance of path 𝑝𝑖 .

We consider vertex conlicts ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑡⟩ that occur when two

agents 𝑖, 𝑗 ∈ D occupy the same location 𝑣 ∈ V at time step 𝑡

and edge conflicts ⟨𝑖, 𝑗, 𝑢, 𝑣, 𝑡⟩ that occur when two agents 𝑖, 𝑗 ∈ D
traverse the same edge ⟨𝑢, 𝑣⟩ = ⟨𝑣,𝑢⟩ ∈ E in opposite directions at

time step 𝑡 [39]. A plan 𝑃 is a solution, i.e., feasible, when it does

not have any vertex or edge conflict therefore no collisions. Our

goal is to find a solution 𝑃∗ that minimizes the flowtime

∑
𝑝∈𝑃 𝑙 (𝑝).

Despite MAPF being an NP-hard problem, there exist a variety

of MAPF solvers that find optimal [32], bounded suboptimal [5], or

quick feasible solutions [16]. Most MAPF solvers are centralized

and require global information which limits scalability and flexi-

bility regarding changes or new maps that would need expensive

replanning and redistribution of plans.

2.2 Multi-Agent Reinforcement Learning
MARL problems can be formulated as a partially observable stochas-

tic gameM = ⟨D,S,A,P,R,Z,Ω⟩, where D = {1, ..., 𝑁 } is a set
of agents, S is a set of states 𝑠𝑡 ,A = A1× ...×A𝑁 is the set of joint

actions 𝑎𝑡 = ⟨𝑎𝑡,1, ..., 𝑎𝑡,𝑁 ⟩, P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the transition proba-

bility, R(𝑠𝑡 , 𝑎𝑡 ) = ⟨𝑟𝑡,1, ..., 𝑟𝑡,𝑁 ⟩ ∈ R𝑁 is the joint reward with 𝑟𝑡,𝑖
being the reward of agent 𝑖 ∈ D,Z is a set of local observations 𝑧𝑡,𝑖

for each agent 𝑖 , and Ω(𝑠𝑡+1) = 𝑧𝑡+1 = ⟨𝑧𝑡+1,1, ..., 𝑧𝑡+1,𝑁 ⟩ ∈ Z𝑁
is

the subsequent joint observation. Each agent 𝑖 maintains an action-

observation history 𝜏𝑡,𝑖 ∈ (Z × A𝑖 )𝑡 . 𝜋 = ⟨𝜋1, ..., 𝜋𝑁 ⟩ is the joint
policy with local policies 𝜋𝑖 , where 𝜋𝑖 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 ) is the action selec-

tion probability of agent 𝑖 . Local policy 𝜋𝑖 can be evaluated with a

value function 𝑄𝜋
𝑖
(𝑠𝑡 , 𝑎𝑡 ) = E𝜋 [𝑅𝑡,𝑖 |𝑠𝑡 , 𝑎𝑡 ] for all states 𝑠𝑡 ∈ S and

𝑎𝑡 ∈ A, where 𝑅𝑡,𝑖 =
∑𝑇−1
𝑘=0

𝛾𝑘𝑟𝑡+𝑘,𝑖 is the return of agent 𝑖 , 𝑇 > 0

is the horizon, and 𝛾 ∈ [0, 1] is the discount factor.
In cooperative MARL, the goal is to find an optimal joint policy

𝜋∗ = ⟨𝜋∗
1
, ..., 𝜋∗

𝑁
⟩ that maximizes the utilitarian metric for all states

𝑠𝑡 ∈ S:
𝑄𝜋
tot
(𝑠𝑡 , 𝑎𝑡 ) =

∑︁
𝑖∈D

𝑄𝜋
𝑖 (𝑠𝑡 , 𝑎𝑡 ) (1)

2.2.1 Policy Gradient MARL. To learn optimal policies 𝜋∗
𝑖
in

large state spaces, function approximators 𝜋𝑖,𝜃 with parameters 𝜃

are trained with gradient ascent on an estimate of 𝐽 = E𝜋 [𝑅0,𝑖 ].
Policy gradient methods use gradients 𝑔 of the following form [43]:

𝑔 = 𝐴𝜋
𝑖 (𝑠𝑡 , 𝑎𝑡 )∇𝜃 log𝜋𝑖,𝜃 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 ) (2)

where 𝐴𝜋
𝑖
(𝑠𝑡 , 𝑎𝑡 ) = 𝑄𝜋

𝑖
(𝑠𝑡 , 𝑎𝑡 ) −𝑉 𝜋

𝑖
(𝑠𝑡 ) is the advantage of agent

𝑖 and 𝑉 𝜋
𝑖
(𝑠𝑡 ) = E𝜋 [𝑅𝑡,𝑖 |𝑠𝑡 ] is its state value function. Actor-critic

approaches often approximate 𝐴𝑖 ≈ 𝐴𝜋𝑖
𝑖

by replacing 𝑄𝜋
𝑖
(𝑠𝑡 , 𝑎𝑡 )

with 𝑅𝑡,𝑖 and 𝑉
𝜋
𝑖

with E𝜋𝑖 [𝑄𝜋
𝑖
]. 𝑄𝜋

𝑖
can be approximated with a

critic 𝑄̂𝑖,𝜔 and parameters 𝜔 using value-based RL [20, 49].

Alternatively, 𝜋𝑖,𝜃 can be trained via proximal policy optimization

(PPO) by iteratively minimizing the following surrogate loss [31]:

LPPO

𝑖 (𝜃 ) = E[min{𝐴𝑖𝜙𝑡,𝑖 (𝜃 ), 𝐴𝑖clip(𝜙𝑡,𝑖 (𝜃 ), 1 − 𝜖, 1 + 𝜖)}] (3)

where 𝜙𝑡,𝑖 (𝜃 ) = 𝜋𝑖,𝜃 (𝑎𝑡,𝑖 |𝜏𝑡,𝑖 )
𝜋old

𝑖,𝜃
(𝑎𝑡,𝑖 |𝜏𝑡,𝑖 )

is the policy probability ratio and 𝜖 ∈
[0, 1) is a clipping parameter. For simplicity, we omit the parameters

𝜃 , 𝜔 and write 𝜋𝑖 , 𝑄̂𝑖 for the rest of the paper.



2.2.2 Centralized Training Decentralized Execution (CTDE).
For many problems, training takes place in a laboratory or in a

simulated environment, where global information is available [28].

Therefore, state-of-the-art MARL algorithms approximate value

functions 𝑄̂𝑖 , which condition on global states 𝑠𝑡 and joint actions

𝑎𝑡 , and use them as critic in Eq. 2 or 3 [18, 51]. While the value

functions 𝑄̂𝑖 are only required during training, the learned policies

𝜋𝑖 only condition on local histories 𝜏𝑡,𝑖 thus being independently

executable. UnlikeMAPF, these policies can generalize over a variety

of scenarios and thus ideally do not need any centralized retraining

or replanning for changes or new maps [30].

𝑄̂𝑖 can be approximated separately for each agent 𝑖 while in-

tegrating global information, which is done in actor-critic MARL

algorithms like MAPPO or MADDPG [18, 51]. However, this ap-

proach lacks a multi-agent credit assignment mechanism for agent

teams, where all agents optimize the same objective 𝑄tot (Eq. 1).

Alternatively, a common value function 𝑄̂ (𝜏𝑡 , 𝑎𝑡 ) ≈ 𝑄tot (𝑠𝑡 , 𝑎𝑡 )
can be learned, which is factorized into ⟨𝑄̂1, ..., 𝑄̂𝑁 ⟩ as local utility
functions by using a factorization operator Ψ [26, 27]:

𝑄̂ (𝜏𝑡 , 𝑎𝑡 ) = Ψ(𝑄̂1 (𝜏𝑡,1, 𝑎𝑡,1), ..., 𝑄̂𝑁 (𝜏𝑡,𝑁 , 𝑎𝑡,𝑁 )) (4)

In practice, Ψ is realized with deep neural networks, such that

⟨𝑄̂1, ..., 𝑄̂𝑁 ⟩ can be learned end-to-end via backpropagation by

minimizing the mean squared temporal difference (TD) error [28, 42].

A factorization operator Ψ is decentralizable when satisfying the

IGM (Individual-Global-Max) such that [37]:

argmaxat𝑄̂ (𝜏𝑡 , 𝑎𝑡 ) =
©­­­«

argmax𝑎𝑡,1
𝑄̂1 (𝜏𝑡,1, 𝑎𝑡,1)
.
.
.

argmax𝑎𝑡,𝑁
𝑄̂𝑁 (𝜏𝑡,𝑁 , 𝑎𝑡,𝑁 )

ª®®®¬ (5)

There exists a variety of factorization operators Ψ, which satisfy

Eq. 5 using monotonicity constraints like QMIX [28] or nonlinear

transformation like QPLEX or QTRAN [37, 47].

2.3 Curriculum Learning
Curriculum learning is a machine learning paradigm, inspired by

human learning, to master complex tasks through stepwise solving

of easier (sub-)tasks, which are sorted by difficulty [3, 38]. The

difficulty can depend on various aspects like the complexity of

data samples, the objective function, or the learned model [10, 22].

Curriculum learning has been applied to reinforcement learning

(RL) to solve hard exploration problems with sparse rewards or dy-

namic constraints [21]. The methods are typically based on self-play

[35, 45], task graphs with traversal mechanisms [33], or automatic

generation of tasks [7, 11].

A key challenge of curriculum learning is to find or generate a

suitable sequence of tasks that are neither too easy nor too difficult

for the learner to ensure steady and robust progress [10, 11, 33].

We focus on reverse curriculum learning, where we assume ex-

plicit goal states as in the MAPF problem (Section 2.1). The curricu-

lum consists of a sequence of tasks, where the (expected) distance

between agent and goal gradually increases [2, 10].

3 RELATEDWORK
Reverse Curriculum Generation. Many works on RL-based

motion control assume a single goal state, which is easy to specify

[1, 19]. A reverse curriculum is defined, where the start state is initial-

ized within a short distance to the goal state. The distance gradually

increases with the convergence or performance improvement of the

agent [2, 10]. Our work is based on reverse curriculum generation,

focusing on multi-agent path finding (MAPF). In MAPF, there are

several goal states that are unique per instance 𝐼 (which can vary

for the same map𝐺 though). We propose a simple confidence-based

approach to adapt the curriculum by considering the uncertainty of

performance estimates.

Curriculum Learning in MARL. Curriculum learning has

been widely used in single-agent or two-player zero-sum games

to improve convergence speed or performance. While many of

these approaches are based on foundations of multi-agent learning

[7, 8, 41], there exist methods particularly designed for MARL based

on self-play, agent skills, and population-based training [14, 46, 50].

Thesemethods are typically very complex due to heavily engineered

architectures and mechanisms thus requiring a significant amount

of compute. As our work focuses on simple and efficient MARL

approaches to MAPF, we do not consider such resource and tuning-

intensive training regimes.

MARL for MAPF. MAPF and MARL are very active research

areas with remarkable progress in recent years [14, 16, 46]. Both

fields have been mainly studied independently of each other, with

only a few works attempting to connect them. The first work in

this direction is PRIMAL. PRIMAL and its successor approaches are

heavily engineered and very complex, using extremely large neu-

ral networks, extensively shaped rewards, and centralized MAPF

solvers for imitation learning to address the challenging aspects of

MAPF, i.e., sparse rewards, dynamic constraints, and coordination

[6, 30, 48]. Despite their effectiveness, these approaches are very

expensive to use due to significant effort on fine-tuning and enor-

mous computational and data requirements. Some recent works

proposed manually designed curricula to enhance PRIMAL but still

rely on very complex architectures and reward functions [23, 52].

Besides applying MARL to MAPF, there have been other attempts

to combine MAPF with machine learning techniques to guide or

select centralized search algorithms [12, 13, 15, 25]. Our goal is to

provide a suitable foundation to bring the areas of MARL andMAPF

closer together with significantly lower costs. Therefore, we propose

a simple reverse curriculum scheme to ease applicability and enable

faster progress in this direction.

4 MAPF AS A STOCHASTIC GAME
To apply MARL techniques to MAPF in a general way, we first

need to formulate the MAPF problem defined in Section 2.1 as a

stochastic gameM according to Section 2.2. Similar to prior work

[6, 30, 39, 48], we focus on discrete gridworlds but try to keep our

formulation general. An adaptation of our methods to arbitrary

graphs, e.g., using graph neural networks, is left for future work.

In both settings, the set of agents D is equivalent. Given a map

𝐺 = ⟨V, E⟩, the state space S is defined by the joint locations of all

agents 𝑠𝑡 = ⟨𝑣𝑡,𝑖 , ..., 𝑣𝑡,𝑁 ⟩ ∈ S ⊂ V𝑁
, where each location in 𝑠𝑡 is



unique such that 𝑣𝑡,𝑖 ≠ 𝑣𝑡, 𝑗 for each agent pair 𝑖, 𝑗 ∈ D with 𝑖 ≠ 𝑗 .

The individual action space A𝑖 of each agent 𝑖 is defined by the

maximum degree of map 𝐺 plus a wait action. In 4-neighborhood

gridworlds as displayed in Fig. 2, each agent would be able to

wait or move in all cardinal directions. The state transitions are

deterministic, where a valid move action will change the location of

the corresponding agent. Attempts to move over non-existent edges

or cause vertex or edge conflicts, i.e., collisions, are automatically

treated as wait action. The individual reward 𝑟𝑡,𝑖 is defined by +1 if

agent 𝑖 reaches its goal 𝑣
goal,𝑖 , 0 when agent 𝑖 is staying at its goal

location 𝑣
goal,𝑖 , and -1 otherwise. Each agent 𝑖 can partially observe

the state 𝑠𝑡 through a local neighborhood around its location 𝑣𝑡,𝑖 . For

gridworlds, we assume a 7×7 field of view (FOV) similar to PRIMAL,

which is illustrated in Fig. 2 [30]. The features of an observation

𝑧𝑡,𝑖 , i.e., obstacles, other agents and their goals, and the direction

and goal location of agent 𝑖 , are encoded as a multi-channel image.

The direction channel encodes the Manhattan distance to the goal

𝑣
goal,𝑖 and indicates the direction to it.

Environment Map

Obstacle
Positions

Other
Goals

Other
Positions

Agent
Goal

Agent
Direction

Figure 2: Example for an individual observation of the red
agent in a gridworld domain. Agents are represented as col-
ored circles, their goals as similarly-colored squares, and
obstacles as black squares. Each agent 𝑖 has a limited field
of view (FOV) of the environment map, which is centered
around its location encoded by five channels: locations of
obstacles, location of other agents’ goals, locations of nearby
agents, and location of the goal 𝑣goal,𝑖 if within the FOV, and
the Manhattan distance and direction of agent 𝑖 to its goal.

When the discount factor is 𝛾 = 1, the negated return −𝑅𝑡,𝑖 of
each agent 𝑖 is equivalent to its travel distance 𝑙 (𝑝𝑖 ) from time

step 𝑡 , if 𝑣
goal,𝑖 was reached, and horizon 𝑇 otherwise. Therefore,

maximizing 𝑄tot =
∑
𝑖∈D 𝑄𝑖 = −E𝐼 [

∑
𝑝∈𝑃 𝑙 (𝑝)] in MARL (Section

2.2 and Eq. 1) would be equivalent to minimizing the expected

flowtime in MAPF w.r.t. any instance 𝐼 on map 𝐺 (Section 2.1).

Since any time step is penalized with -1 anyway (unless an

agent reaches or occupies its goal), all agents are discouraged from

unnecessary delays, which includes collision attempts. Unlike prior

work, we do not need additional penalties for particular situations

like collisions, blocking, or waiting which could fundamentally

change the actual objective and lead to unintended side-effects [36]

Thus, our problem formulation is simpler and more general,

which allows us to solve it in a black-box manner that is more

intuitive for standard MARL methods [28, 47, 51]. However, the

simplicity of our formulation notably increases difficulty since the

reward is sparse in contrast to PRIMAL and related approaches.

5 CONFIDENCE-BASED CURRICULUM
5.1 Training Scheme
We assume a separate training phase to learn coordinated local

policies 𝜋𝑖 for decentralized execution. We train 𝜋𝑖 via policy gra-

dient methods according to Eq. 2 or 3. The critics 𝑄̂𝑖 are trained via

CTDE methods to exploit global information during training using

either independent learning like MAPPO or value factorization like

QMIX or QPLEX as illustrated in Fig. 3 [28, 47, 51]. Since the value

factorization based actor-critic scheme has been used in a variety of

prior work [24, 40], we do not claim novelty here, but propose it as

a basic approach to train cooperative policies via credit assignment

mechanisms [28, 37, 47].

Critic NCritic 1 ... Actor NActor 1 ...

Figure 3: Common actor-critic scheme as used in various
prior work on cooperative MARL [24, 40]. A separate critic
is trained for each actor using some centralized factorization
operator Ψ like QMIX or QPLEX [27].

To address the coordination problem as mentioned in the intro-

duction, we suggest to optimize individual utilities 𝑄̂𝑖 ≈ 𝑄𝜋
𝑖
under

consideration of the utilitarian metric 𝑄tot in Eq. 1. For that, the

individual utilities 𝑄̂𝑖 can be learned end-to-end through a factoriza-

tion operator Ψ like QMIX or QPLEX to consider multi-agent credit

assignment from a cooperative perspective [26–28, 47]. The factor-

ization operator Ψ approximates the expected sum of individual

returns by minimizing the factorization loss LΨ
defined by:

LΨ = E
[(
Ψ(𝑄̂1 (𝜏𝑡,1, 𝑎𝑡,1), ..., 𝑄̂𝑁 (𝜏𝑡,𝑁 , 𝑎𝑡,𝑁 )) −

∑︁
𝑖∈D

𝑅𝑡,𝑖

)
2
]

(6)

The local policies 𝜋𝑖 are then trained according to Eq. 2 or 3

using counterfactual advantages 𝐴𝑖 defined by [40]:

𝐴𝑖 (𝜏𝑡,𝑖 , 𝑎𝑡,𝑖 ) = 𝑅𝑡,𝑖 −
∑︁

𝑎′∈A𝑖

𝜋𝑖 (𝑎′ |𝜏𝑡,𝑖 )𝑄̂𝑖 (𝜏𝑡,𝑖 , 𝑎′) (7)

where the return 𝑅𝑡,𝑖 represents the negative travel distance −𝑙 (𝑝𝑖 )
of agent 𝑖 from time step 𝑡 according to Section 4. The advantage

𝐴𝑖 incentivizes the optimization of travel distances under implicit

consideration of other agents through 𝑄̂𝑖 and Ψ w.r.t. Eq. 1 and 6.

5.2 Reverse Curriculum Scheme
The training scheme described above represents a general approach

to learn coordinated policies 𝜋𝑖 [24, 40]. However, sparse rewards

and dynamic constraints in our MAPF setting (Section 4) pose

particular challenges that require a suitable curriculum to learn



meaningful policies [2, 10]. Unlike prior work that relied on com-

plex reward functions with various penalties and expensive expert

data for imitation learning, we propose Confidence-based Auto-

Curriculum for Team Update Stability (CACTUS) to enhance the

training scheme of Section 5.1 without significant costs.

At the beginning of every episode 𝑚, each agent 𝑖 starts at

a random location 𝑣start,𝑖 ∈ V and needs to navigate to an as-

signed goal location 𝑣
goal,𝑖 ∈ V which is randomly placed within

an allocation radius 𝑅
alloc

1
around the start location 𝑣start,𝑖 . 𝑅alloc

characterizes the potential difficulty of generated instances 𝐼 as

larger allocation radii may require the agents to move and explore

over longer distances to locate their respective goals. Thus, our

reverse curriculum scheme starts with a small allocation radius of

𝑅
alloc

= 1 and gradually increments 𝑅
alloc

with improving perfor-

mance, which is measured by the completion rate 𝜌
complete

𝑚 =
𝑁

goal

𝑚

𝑁
,

where 𝑁
goal

𝑚 = |{𝑖 ∈ D|𝑣𝑡,𝑖 = 𝑣goal,𝑖 }| is the number of agents that

successfully reached their respective goals in episode𝑚.

CACTUS uses a statistical approach to decide whether to incre-

ment 𝑅
alloc

or not. After each epoch of 𝐸 episodes𝑚, we measure

the average completion rate 𝜇 = 1

𝐸

∑𝐸
𝑚=1 𝜌

complete

𝑚 and its standard

deviation 𝜎 =

√︃
1

𝐸−1
∑𝐸
𝑚=1 (𝜌

complete

𝑚 − 𝜇)2.
Assuming that the completion rates 𝜌

complete

𝑚 follow a normal

distribution, CACTUS increments 𝑅
alloc

by 1, if 𝜇 − 𝜂𝜎 ≥ 𝑈 , where

𝑈 ∈ (0, 1) is the curriculum decision threshold and 𝜂 > 0 is a

deviation factor to specify the confidence level. For example, if

𝑈 = 75% and 𝜂 = 2 then 𝑅
alloc

would be incremented only if

all agents achieve an average completion rate over 75% with a

confidence level of around 97%. Note that we only regard one-

tailed tests here, where we assume no upper limit to the average

completion rate of agents (except for 𝜇 = 100%, where 𝜎 would be

zero). The curriculum update scheme is illustrated in Fig. 1.

The complete formulation of CACTUS is given in Algorithm 1.

G is a set of training maps or a map generator, DIST : V ×V → R
is a vertex distance function,𝑈 is the curriculum decision threshold,

and 𝜂 is the deviation factor.

5.3 Conceptual Discussion
CACTUS represents a simple reverse curriculum scheme inspired

by prior work [2, 10]. Our work focuses on the MAPF problem,

where we have multiple agents with different start and goal loca-

tions that can vary per instance 𝐼 . To ensure generalization over

a variety of MAPF instances and maps, our scheme adjusts the

random allocation of goals around the random start locations.

In contrast to prior work [23, 52], CACTUS does not separate

learning of different skills like navigation and collision avoidance.

As illustrated in Fig. 1, all agents first need to focus on reaching

their respective goals, which are allocated in close proximity within

𝑅
alloc

. With increasing 𝑅
alloc

, the allocation areas of different agents

may overlap, automatically causing agents to interact with each

other thus increasing coordination pressure. 𝑅
alloc

is only incre-

mented when agents are able to coordinate and reach their goals

1
A vertex distance measure is required, which can depend on the number of edges, for

example. In this paper, we measure the distance between two positions (𝑥1, 𝑦1 ) and
(𝑥2, 𝑦2 ) by max{ |𝑥1 − 𝑥2 |, |𝑦1 − 𝑦2 | } for two-dimensional environments.

Algorithm 1 Confidence-Based Curriculum Learning for MAPF

1: procedure DRIVE(G,DIST,𝑈 , 𝜂)
2: Initialize parameters of 𝜋𝑖 , 𝑄̂𝑖 for each agent 𝑖 ∈ D and Ψ
3: Set 𝑅

alloc
= 1

4: for epoch 𝑥 ← 1, 𝑋 do
5: for episode𝑚 ← 1, 𝐸 do
6: Randomly select or generate map 𝐺 from G
7: Sample 𝑠0 ⊲ Set start locations 𝑣start,𝑖
8: for agent 𝑖 ∈ D do
9: Set 𝜏0,𝑖 based on Ω(𝑠0)
10: SetV

goal,i
← {𝑣 ∈ V|DIST(𝑣, 𝑣start,𝑖 ) ≤ 𝑅alloc}

11: Randomly select goal location 𝑣
goal,𝑖 fromVgoal,i

⊲ Goal locations must be unique, i.e, 𝑣
goal,𝑖 ≠ 𝑣goal, 𝑗 if 𝑖 ≠ 𝑗

12: for time step 𝑡 ← 0,𝑇 − 1 do
13: for agent 𝑖 ∈ D do
14: 𝑎𝑡,𝑖 ∼ 𝜋𝑖 (·|𝜏𝑡,𝑖 )
15: 𝑎𝑡 ← ⟨𝑎𝑡,1, ..., 𝑎𝑡,𝑁 ⟩
16: Execute joint action 𝑎𝑡
17: 𝑠𝑡+1 ∼ T (·|𝑠𝑡 , 𝑎𝑡 )
18: 𝑧𝑡+1 ← Ω(𝑠𝑡+1)
19: 𝑒𝑡 ← ⟨𝜏𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑧𝑡+1, ⟩
20: Store experience sample 𝑒𝑡
21: 𝜏𝑡+1 ← ⟨𝜏𝑡 , 𝑎𝑡 , 𝑧𝑡+1⟩
22: 𝜌

complete

𝑚 ← |{𝑖 ∈ D|𝑣𝑡,𝑖 = 𝑣goal,𝑖 }|/𝑁
23: Train Ψ and 𝜋𝑖 , 𝑄̂𝑖 for each agent 𝑖 ∈ D with all 𝑒𝑡

24: Calculate 𝜇 and 𝜎 with all 𝜌
complete

𝑚

25: if 𝜇 − 𝜂𝜎 ≥ 𝑈 then ⊲ Curriculum update decision

26: 𝑅
alloc
← 𝑅

alloc
+ 1

27: return ⟨𝜋1, ..., 𝜋𝑁 ⟩

with sufficiently high confidence, which is checked with the hyper-

parameters𝑈 and 𝜂. Thus, CACTUS offers an adaptive approach to

solving MAPF problems via MARL without requiring explicit sepa-

ration of agent skills [23, 46, 52], extensive engineering of rewards,

or expensive acquisition of expert data [6, 30, 48].

Since the goals are randomly initialized within allocation radius

𝑅
alloc

around the agents’ start locations, they can still be allocated

in closer proximity to the agents which alleviates catastrophic

forgetting of easier tasks that the agents have mastered before.

6 EXPERIMENTAL SETUP
6.1 Maps and Instances
The training maps are randomly generated according to [30] and

have different shapes 𝐾 × 𝐾 defined by map size 𝐾 ∈ {10, 40, 80}.
The obstacle density 𝛿 ∈ {0, 0.1, 0.2, 0.3} defines the fraction of

non-occupiable locations in the maps. All agents start at random

locations with randomly assigned goals according to an allocation

radius 𝑅
alloc

. If 𝑅
alloc

= ∞, then the goals can be placed anywhere

on the training map.

The test maps are provided by [30]. For each map configuration

of size 𝐾 and obstacle density 𝛿 , there are 100 pre-generated test

instances 𝐼 with fixed start and goal locations for all agents to

ensure a fair comparison between different MARL approaches.



We always set 𝛾 = 1 as suggested in Section 4.

6.2 Algorithms and Training
We implement PPO

2
for policy learning according to Eq. 3 and

QMIX, QPLEX, and MAPPO for critic learning. We implement a

purely RL-based version of PRIMAL using the same reward function

as defined in [30]. In addition, we employ a naive baseline, called No

Curriculum, only consisting of PPO and QMIX
3
without any shaped

reward. PRIMAL and No Curriculum are trained with 𝑅
alloc

= ∞
(Section 6.1).

We train all algorithms on different training maps as explained in

Section 6.1 with 𝑁 = 8 agents for 5000 epochs consisting of 𝐸 = 32

episodes. The maps of size 𝐾 = 10 are sampled twice as often as

the other map sizes as proposed in [30]. Each episode terminates

after all agents reach their goal or after 𝑇 = 256 time steps. All

algorithms use parameter sharing, i.e., where all agents use the

same policy and individual critic network 𝜋𝑖 and 𝑄̂𝑖 respectively.

We denote CACTUS (X) as CACTUS using MARL algorithm X

for critic learning. Unless stated otherwise, CACTUS always uses

PPO for policy and X=QMIX for critic learning.

In addition, we run CBSH as a slow but optimal MAPF solver

with a runtime limit of 5 minutes [9] and MAPF-LNS [16] as a fast

anytime MAPF solver with a runtime limit of 1 minute.

6.3 Neural Networks and Hyperparameters
For CACTUS and No Curriculum, we use deep neural networks to

implement 𝜋𝑖 and 𝑄̂𝑖 for each agent 𝑖 and factorization operator

Ψ for QMIX and QPLEX. The neural networks are updated after

every 𝐸 = 32 episodes using ADAM with a learning rate of 0.001.

Since all regarded maps are gridworlds, the observations are en-

coded as multi-channel image as illustrated in Fig. 2. We implement

all neural networks as multilayer perceptron (MLP) and flatten the

multi-channel images before feeding them into the networks. 𝜋𝑖

and 𝑄̂𝑖 have two hidden layers of 64 units with ELU activation. The

output of 𝜋𝑖 has |A𝑖 | units with softmax activation. The output

of 𝑄̂𝑖 has |A𝑖 | linear units. The hypernetworks of QMIX as well

as the critic of MAPPO have two hidden layers of 128 units with

ELU activation and one or |A𝑖 | linear output units respectively. For
PRIMAL, we use the same architecture as proposed in [30].

Unless stated otherwise, CACTUS always uses a threshold of

𝑈 = 75% and a deviation factor of 𝜂 = 2, which corresponds to a

confidence level of about 97% in one-tailed tests.

Computing Infrastructure. All training and test runs are per-

formed on a x86_64 GNU/Linux (Ubuntu 18.04.5 LTS) machine with

i7-8700 @ 3.2GHz CPU (8 cores) and 64 GB RAM. Due to the sim-

plicity of CACTUS, we do not need any GPU or distributed HPC

infrastructure in contrast to [6, 30, 48].

7 RESULTS
For each experiment, all respective algorithms are run 10 times to

report the average progress and the 95% confidence interval. We

2
Code available at github.com/thomyphan/rl4mapf.

3
We choose QMIX for consistency with our default setting. Replacing QMIX with

QPLEX or MAPPO does not notably affect the performance of this baseline.

evaluate the training progress and generalization of trained policies

with the pre-generated test instances 𝐼 explained in Section 6.1.

7.1 Simplicity of CACTUS
To demonstrate the simplicity of CACTUS, we first quantify the

training time, the training data w.r.t. the number of episodes, the

number of trainable parameters, and the reward complexity and

compare them with the original PRIMAL as specified in [30].

An overview is given in Table 1. In almost all aspects, CACTUS

only requires 5% or less of the effort of the original PRIMAL there-

fore being clearly the simpler and more efficient MARL approach

to MAPF. Unlike PRIMAL, CACTUS is only run on CPU while still

requiring significantly less training time. Furthermore, CACTUS

does not depend on any expert data, i.e., recommendations of a

centralized MAPF solver, which saves a significant amount of com-

pute. While the reward function of PRIMAL requires four penalties

for very specific situations, CACTUS is trained with a very simple

reward function that penalizes any time step unless the goal is

reached without considering any specific case (Section 4).

Table 1: Comparison of the original PRIMAL and CACTUS
w.r.t. various numbers in our experiments. The last column
provides the amount of effort relative to the original PRIMAL.
The numbers of the original PRIMAL are from [30]. Unlike
[30], we do not use any GPU or expert data for training.

PRIMAL

(original [30])

CACTUS Rel. to

PRIMAL

Training Time ≈ 20 days ≈ 1 day ≈ 5%

# Training Episodes ≈ 3.8 million 160, 000 ≈ 4.2%

# Parameters ≈ 13 million 579, 979 ≈ 4.5%

# Reward Penalties 4 1 25%

Fig. 4 compares the number of trainable parameters and neural

network architectures of PRIMAL and CACTUS. In CACTUS, the

critic with the mixing network has the majority of trainable param-

eters, which are only required during training. The actor size is

negligible in CACTUS, which enables significantly faster inference

than PRIMAL. The network architecture of CACTUS is also much

simpler than PRIMAL since it is only based on MLPs thus does not

depend on specialized hardware or significant computational effort

for fine-tuning and training.

7.2 Curriculum Learning
Weevaluate the effect of CACTUS usingQMIX, QPLEX, andMAPPO

as current state-of-the-art MARL techniques [28, 47, 51]. After ev-

ery epoch, we measure the average completion rate w.r.t. all test

instances 𝐼 with map size𝐾 ∈ {10, 40, 80} as well as obstacle density
𝛿 ∈ {0, 0.1, 0.2, 0.3} for 𝑁 = 8 agents.

The results are shown in Fig. 5. CACTUS (QMIX) and CAC-

TUS (QPLEX) perform best. PRIMAL always outperforms CACTUS

(MAPPO). No Curriculum fails to learn any meaningful policy. How-

ever, PRIMAL is barely able to outperform No Curriculum after

24 hours of training. CACTUS (QMIX) completes training below

24 hours, while CACTUS (QPLEX) and CACTUS (MAPPO) require

slightly more training time than 24 hours.

github.com/thomyphan/rl4mapf


Figure 4: Left: Comparison of the number of trainable param-
eters in PRIMAL and CACTUS. Note the logarithmic scale on
the y-axis. Right: The schematic network architectures used
for PRIMAL and CACTUS. The sizes do not reflect any quan-
tity and only illustrate the components used for learning.

Figure 5: Average training progress of CACTUS variants, PRI-
MAL, and a naive MARL baseline without any curriculum
w.r.t. training epochs (left) and training time (right). The per-
formance is evaluated on all pre-generated test instances 𝐼 of
[30] with 𝐾 ∈ {10, 40, 80}, 𝛿 ∈ {0, 0.1, 0.2, 0.3}, and 𝑁 = 8 agents.
Shaded areas show the 95% confidence interval.

7.3 CACTUS Hyperparameters
Next, we evaluate the impact of different decision thresholds𝑈 ∈
{0.25, 0.5, 0.75} and deviation factors 𝜂 = {1, 2, 3} on CACTUS.

After every epoch, we measure the average completion rate w.r.t.

all test instances 𝐼 with map size 𝐾 ∈ {10, 40, 80} as well as obstacle
density 𝛿 ∈ {0, 0.1, 0.2, 0.3} for 𝑁 = 8 agents. For the deviation

factor evaluation, we consider CACTUS with 𝑈 = 0.25, since all

variants with𝑈 = 0.75 perform very similar as shown in Fig. 5.

The results are shown in Fig. 6. CACTUS performs best with

𝑈 = 0.75 and second best with 𝑈 = 0.5. CACTUS with 𝑈 = 0.25

performs best when 𝜂 = 2 and second best with 𝜂 = 3. All CACTUS

variants clearly outperform PRIMAL.

7.4 Generalization
Finally, we evaluate the generalization capabilities of policies trained

with CACTUS using QMIX, QPLEX, and MAPPO as well as PRI-

MAL, and No Curriculum. All policies are trained for 5000 epochs

consisting of 32 episodes before being evaluated on all test instances

𝐼 with map size 𝐾 ∈ {40, 80} and obstacle density 𝛿 ∈ {0, 0.2} with
different numbers of agents 𝑁 . Note that all policies have only

Figure 6: Average training progress of CACTUS variants,
PRIMAL, and a naive MARL baseline without any curricu-
lum w.r.t. different decision thresholds 𝑈 (left) and devia-
tion factors 𝜂 (right). The performance is evaluated on all
pre-generated test instances 𝐼 of [30] with 𝐾 ∈ {10, 40, 80},
𝛿 ∈ {0, 0.1, 0.2, 0.3}, and 𝑁 = 8 agents. The right plot shows
CACTUS variants with𝑈 = 0.25. Shaded areas show the 95%
confidence interval.

been trained with 𝑁 = 8 (Section 6.2). We also report the average

performance of the centralized MAPF solvers CBSH andMAPF-LNS.

The generalization results w.r.t. different numbers of agents 𝑁

are shown in Fig. 7. CACTUS (QMIX) generalizes best compared to

all other MARL approaches. In test instances with low obstacle den-

sity, CACTUS (QMIX) always achieves an average completion rate

over 70% when scaling up to 𝑁 = 64 agents. If 𝛿 = 0, then CACTUS

(QMIX) is able to complete at least 50% of all agents when scaling

up to 𝑁 = 128. CACTUS (QPLEX) always outperforms PRIMAL on

average except in instances with low obstacle density and map size

𝐾 = 40, where the number of agents exceeds 32. PRIMAL is always

outperformed by CACTUS (QMIX) but consistently outperforms

CACTUS (MAPPO) and No Curriculum. All approaches perform

poorly when the agent number is 𝑁 ≥ 256 or 𝛿 = 0.2.

Compared to the centralized MAPF solvers, CACTUS (QMIX)

can only outperform CBSH, when the obstacle density 𝛿 is low.

MAPF-LNS is the best performing approach, always achieving a

completion rate of 100% in all test instances.

7.5 Limitation in Structured Maps
In addition, we tested CACTUS and the learning baselines in struc-

tured maps with rooms and narrow corridors such as mazes. While

training was conducted on randomly generated maps as explained

in Section 6.1, we evaluated the training progress using all maze

and room maps of the common MAPF benchmark from [39].

The results are shown in Fig. 8. Compared to the results for

unstructured maps in Section 7.2, all approaches perform signifi-

cantly worse with none of them reaching an average completion

rate above 25%. CACTUS (QMIX) consistently outperforms all other

approaches, which generally fail to complete more than 10% of all

agent tasks.

8 DISCUSSION
In this paper, we presented CACTUS as a lightweight MARL ap-

proach to MAPF. CACTUS defines a simple reverse curriculum

scheme, where the goal of each agent is randomly placed within an



Map Size 40

Map Size 80

Figure 7: Average generalization performance of CACTUS
variants as well as MARL and MAPF baselines to all test
instances 𝐼 of size 𝐾 ∈ {40, 80} and obstacles density 𝛿 ∈
{0, 0.1, 0.2, 0.3} w.r.t. different numbers of agents 𝑁 . The icons
on the top-right of each plot show a 10× 10 sub-grid example
to illustrate the obstacle density. Shaded areas show the 95%
confidence interval.

Figure 8: Average training progress of CACTUS variants, PRI-
MAL, and a naive MARL baseline without any curriculum in
structured maps. The performance is evaluated on all maze
and room maps provided by [39] respectively.

allocation radius around the agent’s start location. The allocation

radius increases gradually as all agents improve, which is assessed

by a confidence-based measure.

Our results confirm the necessity of adequate curricula, as stan-

dard MARL methods without any curriculum would likely fail to

learn any meaningful policy in our MAPF setting (Section 4). This

is due to the sparse reward and the dynamic constraints of the

problem formulation. The shaped reward function of PRIMAL is

helpful in improving performance over standard MARL. Due to

the many specifically defined penalties, PRIMAL policies are rather

conservative, which leads to a performance plateau that cannot be

overcome without imitation learning on suitable expert data. How-

ever, CACTUS with QMIX or QPLEX clearly outperforms PRIMAL

with 95% less training time and learnable parameters without any

additional reward shaping or expert data. CACTUS with MAPPO

performs poorly, which indicates the importance of adequate credit

assignment mechanisms, e.g, value factorization, to address the

coordination problem in MAPF.

CACTUS is robust w.r.t. the choice of hyperparameters as any

configuration with decision threshold𝑈 ≥ 25% and deviation fac-

tor 𝜂 ≥ 1 outperforms PRIMAL as shown in Fig. 6. However, the

decision threshold 𝑈 should be sufficiently high (at least 50%) to

ensure an adequate difficulty level for the agents. Choosing a confi-

dence level that is too high, e.g., using 𝜂 > 3, could result in slow

curriculum updates, where agents may overfit on easy tasks.

Despite the relatively restrictive time and data budget compared

to the original PRIMAL, CACTUS generalizes quite well with value

factorization over different numbers of agents 𝑁 and map sizes 𝐾 .

CACTUS with QMIX scales up to instances with 8 to 16 times more

agents than used during training, in contrast to standard MARL,

which generally fails to learn any meaningful policy in the MAPF

problem. While generalizing better than the alternative approaches,

CACTUS still has some limitations regarding high obstacle den-

sity, large map sizes and structured maps with separate rooms

and narrow corridors, where there is still potential for improve-

ment. Despite the ability of efficient decentralized decision-making,

CACTUS is not competitive to centralized MAPF solvers due to its

limited scalability.

Nevertheless, CACTUS clearly demonstrates how simple and

well-defined curricula can enhance MARL techniques for MAPF

without relying on extremely large neural networks, extensively

shaped reward functions, or centralized MAPF solvers for imitation

learning. Therefore, we hope to provide a suitable foundation to

enable faster progress in connecting the areas of MARL and MAPF

with significantly lower costs.

ACKNOWLEDGEMENTS
The research at the University of Southern California was supported

by the National Science Foundation (NSF) under grant numbers

1817189, 1837779, 1935712, 2121028, 2112533, and 2321786 as well

as a gift from Amazon Robotics. The research at the Georgia In-

stitute of Technology was supported by NSF under grant number

2112533. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the sponsoring

organizations, agencies, or the U.S. government.

REFERENCES
[1] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. 2019.

Solving the Rubik’s Cube with Deep Reinforcement Learning and Search. Nature

Machine Intelligence 1, 8 (2019), 356–363.

[2] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. 1996.

Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforcement

Learning. Machine learning 23 (1996), 279–303.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum Learning. In 26th International Conference on Machine Learning.

[4] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. 2010. Multi-Agent Re-

inforcement Learning: An Overview. Innovations in Multi-Agent Systems and

Applications-1 (2010), 183–221.

[5] Liron Cohen and Sven Koenig. 2016. Bounded Suboptimal Multi-Agent Path

Finding Using Highways. In IJCAI. 3978–3979.

[6] Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. 2021.

PRIMAL _2: Pathfinding via Reinforcement and Imitation Multi-Agent Learning-

Lifelong. IEEE Robotics and Automation Letters 6, 2 (2021), 2666–2673.



[7] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Rus-

sell, Andrew Critch, and Sergey Levine. 2020. Emergent Complexity and Zero-

Shot Transfer via Unsupervised Environment Design. NeurIPS 33 (2020).

[8] Yuqing Du, Pieter Abbeel, and Aditya Grover. 2021. It Takes Four to Tango:

Multiagent Self Play for Automatic Curriculum Generation. In ICLR.

[9] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, TK Satish Kumar,

and Sven Koenig. 2018. Adding Heuristics to Conflict-Based Search for Multi-

Agent Path Finding. In ICAPS, Vol. 28. 83–87.

[10] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter

Abbeel. 2017. Reverse Curriculum Generation for Reinforcement Learning. In

Conference on Robot Learning. PMLR, 482–495.

[11] Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier, Thomy Phan, et al. 2019.

Scenario Co-Evolution for Reinforcement Learning on aGridWorld Smart Factory

Domain. In Genetic and Evolutionary Computation Conference. 898–906.

[12] Taoan Huang, Sven Koenig, and Bistra Dilkina. 2021. Learning to Resolve Con-

flicts for Multi-Agent Path Finding with Conflict-Based Search. In AAAI Confer-

ence on Artificial Intelligence, Vol. 35. 11246–11253.

[13] Taoan Huang, Jiaoyang Li, Sven Koenig, and Bistra Dilkina. 2022. Anytime

Multi-Agent Path Finding via Machine Learning-Guided Large Neighborhood

Search. In 36th AAAI Conference on Artificial Intelligence (AAAI). 9368–9376.

[14] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Lever, et al.

2019. Human-Level Performance in 3DMultiplayer Games with Population-based

Reinforcement Learning. Science 364, 6443 (2019).

[15] Omri Kaduri, Eli Boyarski, and Roni Stern. 2020. Algorithm Selection for Optimal

Multi-Agent Pathfinding. In ICAPS, Vol. 30. 161–165.

[16] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. 2021.

Anytime Multi-Agent Path Finding via Large Neighborhood Search. In Interna-

tional Joint Conference on Artificial Intelligence (IJCAI). 4127–4135.

[17] Jiaoyang Li, Andrew Tinka, Scott Kiesel, JosephWDurham, TK Satish Kumar, and

Sven Koenig. 2021. LifelongMulti-Agent Path Finding in Large-ScaleWarehouses.

In AAAI Conference on Artificial Intelligence, Vol. 35. 11272–11281.

[18] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In

Advances in Neural Information Processing Systems. 6379–6390.

[19] Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. 2018.

Solving the Rubik’s Cube with Approximate Policy Iteration. In ICLR.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Rusu, et al. 2015. Human-

Level Control through Deep Reinforcement Learning. Nature 518, 7540 (2015).

[21] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,

and Peter Stone. 2020. Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey. The Journal of Machine Learning Research 21, 1 (2020).

[22] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. 2016. Source

Task Creation for Curriculum Learning. In AAMAS.

[23] Phu Pham and Aniket Bera. 2023. Crowd-Aware Multi-Agent Pathfinding with

Boosted Curriculum Reinforcement Learning. arXiv preprint arXiv:2309.10275

(2023).

[24] Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, and

Claudia Linnhoff-Popien. 2021. Resilient Multi-Agent Reinforcement Learning

with Adversarial Value Decomposition. AAAI Conference on Artificial Intelligence

13 (2021).

[25] Thomy Phan, Taoan Huang, Bistra Dilkina, and Sven Koenig. 2024. Adaptive

Anytime Multi-Agent Path Finding Using Bandit-Based Large Neighborhood

Search. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2024).

https://thomyphan.github.io/publication/2024-02-01-aaai-phan

[26] Thomy Phan, Fabian Ritz, Philipp Altmann, Maximilian Zorn, Jonas Nüßlein,

Michael Kölle, Thomas Gabor, and Claudia Linnhoff-Popien. 2023. Attention-

Based Recurrence for Multi-Agent Reinforcement Learning under Stochastic

Partial Observability. In 40th International Conference on Machine Learning.

[27] Thomy Phan, Fabian Ritz, Lenz Belzner, Philipp Altmann, Thomas Gabor, and

Claudia Linnhoff-Popien. 2021. VAST: Value Function Factorization with Variable

Agent Sub-Teams. In Advances in Neural Information Processing Systems, Vol. 34.

Curran Associates, Inc., 24018–24032.

[28] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-

quhar, Jakob Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value

Function Factorisation for Deep Multi-Agent Reinforcement Learning. In 35th

International Conference on Machine Learning. PMLR, 4295–4304.

[29] Daniel Ratner and Manfred Warmuth. 1986. Finding a Shortest Solution for the

NxN Extension of the 15-Puzzle is Intractable. In 5th AAAI National Conference

on Artificial Intelligence. AAAI Press, 168–172.

[30] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar,

et al. 2019. PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent

Learning. IEEE Robotics and Automation Letters 4, 3 (2019), 2378–2385.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, et al. 2017. Proximal Policy

Optimization Algorithms. arXiv preprint arXiv:1707.06347 (2017).

[32] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. 2012. Conflict-

Based Search For Optimal Multi-Agent Path Finding. AAAI Conference on Artifi-

cial Intelligence 26, 1 (Sep. 2012), 563–569.

[33] Felipe Leno Da Silva and Anna Helena Reali Costa. 2018. Object-Oriented Cur-

riculum Generation for Reinforcement Learning. In 17th International Conference

on Autonomous Agents and Multiagent Systems. 1026–1034.

[34] David Silver. 2005. Cooperative Pathfinding. AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment 1, 1 (Sep. 2005), 117–122.

[35] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, et al.

2017. Mastering the Game of Go without Human Knowledge. Nature 550, 7676

(2017), 354–359.

[36] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. 2022.

Defining and Characterizing Reward Gaming. Advances in Neural Information

Processing Systems 35 (2022), 9460–9471.

[37] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung

Yi. 2019. QTRAN: Learning to Factorize with Transformation for Cooperative

Multi-Agent Reinforcement Learning. In 36th International Conference on Machine

Learning. PMLR, 5887–5896.

[38] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. 2022. Curriculum

Learning: A Survey. International Journal of Computer Vision 130, 6 (2022).

[39] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. 2019. Multi-

Agent Pathfinding: Definitions, Variants, and Benchmarks. In International Sym-

posium on Combinatorial Search, Vol. 10. 151–158.

[40] Jianyu Su, Stephen Adams, and Peter Beling. 2021. Value-Decomposition Multi-

Agent Actor-Critics. In AAAI Conference on Artificial Intelligence, Vol. 35.

[41] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur

Szlam, and Rob Fergus. 2018. Intrinsic Motivation and Automatic Curricula via

Asymmetric Self-Play. In ICLR.

[42] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, et al.

2018. Value-Decomposition Networks for Cooperative Multi-Agent Learning

based on Team Reward. In AAMAS (Extended Abstract).

[43] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

2000. Policy Gradient Methods for Reinforcement Learning with Function Ap-

proximation. In Advances in Neural Information Processing Systems. 1057–1063.

[44] Ming Tan. 1993. Multi-Agent Reinforcement Learning: Independent vs. Coopera-

tive Agents. In 10th International Conference on Machine Learning. 330–337.

[45] Gerald Tesauro et al. 1995. Temporal Difference Learning and TD-Gammon.

Commun. ACM 38, 3 (1995), 58–68.

[46] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Mathieu, et al. 2019.

Grandmaster Level in StarCraft II using Multi-Agent Reinforcement Learning.

Nature (2019), 1–5.

[47] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2020.

QPLEX: Duplex Dueling Multi-Agent Q-Learning. In ICLR.

[48] Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. 2023.

SCRIMP: Scalable Communication for Reinforcement-and Imitation-Learning-

Based Multi-Agent Pathfinding. In 2023 International Conference on Autonomous

Agents and Multiagent Systems. 2598–2600.

[49] Christopher JCH Watkins and Peter Dayan. 1992. Q-Learning. Machine Learning

8, 3-4 (1992), 279–292.

[50] Jizhou Wu, Tianpei Yang, Xiaotian Hao, Jianye Hao, Yan Zheng, Weixun Wang,

and Matthew E Taylor. 2023. PORTAL: Automatic Curricula Generation for

Multiagent Reinforcement Learning. In AAMAS (Extended Abstract). 2460–2462.

[51] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,

and YiWu. 2022. The Surprising Effectiveness of PPO in Cooperative Multi-Agent

Games. Advances in Neural Information Processing Systems 35 (2022).

[52] Cheng Zhao, Liansheng Zhuang, Yihong Huang, and Haonan Liu. 2023. Curricu-

lum Learning Based Multi-Agent Path Finding for Complex Environments. In

2023 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

https://thomyphan.github.io/publication/2024-02-01-aaai-phan

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-Agent Path Finding
	2.2 Multi-Agent Reinforcement Learning
	2.3 Curriculum Learning

	3 Related Work
	4 MAPF as a Stochastic Game
	5 Confidence-based Curriculum
	5.1 Training Scheme
	5.2 Reverse Curriculum Scheme
	5.3 Conceptual Discussion

	6 Experimental Setup
	6.1 Maps and Instances
	6.2 Algorithms and Training
	6.3 Neural Networks and Hyperparameters

	7 Results
	7.1 Simplicity of CACTUS
	7.2 Curriculum Learning
	7.3 CACTUS Hyperparameters
	7.4 Generalization
	7.5 Limitation in Structured Maps

	8 Discussion
	References

