
Social Neural Network Soups with Surprise Minimization

Maximilian Zorn1, Steffen Illium1, Thomy Phan1, Tanja Katharina Kaiser2,
Claudia Linnhoff-Popien1, Thomas Gabor1

1 LMU Munich, 2 TU Dresden and ScaDS.AI Dresden/Leipzig
maximilian.zorn@ifi.lmu.de

Abstract

A recent branch of research in artificial life has constructed
artificial chemistry systems whose particles are dynamic neu-
ral networks. These particles can be applied to each other
and show a tendency towards self-replication of their weight
values. We define new interactions for said particles that
allow them to recognize one another and learn predictors
for each other’s behavior. For instance, each particle mini-
mizes its surprise when observing another particle’s behav-
ior. Given a special catalyst particle to exert evolutionary
selection pressure on the soup of particles, these ‘social’ in-
teractions are sufficient to produce emergent behavior similar
to the stability pattern previously only achieved via explicit
self-replication training.

Introduction
Chang and Lipson (2018) originally considered neural net-
works that are capable of being applied to their own weights
as an input, which requires some special call structure as
neural networks usually have at least one weight per in-
put parameter. Gabor et al. (2019) constructed an artificial
chemistry system based on such networks as particles where
their reciprocal application leads to non-trivial emergent be-
havior. However, they also needed to train the neural net-
works with some form of self-replication as an explicit goal
to achieve such behavior and stabilize the overall process.

Since the initial concept, this approach has been put to
some more elaborate applications by Randazzo et al. (2021)
and Illium et al. (2022). We make core use of the approach
presented by Gabor et al. (2021) to include additional goals
beyond self-replication for each particle. There, particles al-
ternate by being trained for self-replication (which is still
necessary to achieve stability) and being trained to fulfill an
additional simple goal, which is completely independent of
the soup dynamics. In this paper, we apply a similar inter-
face but train particles to ‘get to know’ their peers within the
soup as an additional goal.

Constructing artificial chemistries from soups offers mul-
tiple research perspectives: We may be interested in re-
building typical artificial chemistry setups using neural net-
works for the sake of comparing neural networks to other

data structures used to encode behavior in other artificial
chemistries (Gabor et al., 2022). We may also try to dis-
cover new capabilities or architectures for neural networks
that may be worthwhile to use in the countless current ap-
plications of neural networks (Randazzo et al., 2021; Il-
lium et al., 2022). In this paper, we aim for a bit of
both: We use the ‘additional goal technique’ to introduce
(to some extent) ‘social’ behavior to the soup of particles.
We also introduce a catalyst particle that is able to influ-
ence the soup behavior akin to the principles of guided self-
organization (Prokopenko, 2013). Both ideas have a rather
intuitive implementation on neural network particles and
both ideas might be useful for (multi-agent) artificial intel-
ligence beyond observing artificial chemistries. Note, how-
ever, that we leave these more complex multi-agent systems
for future work.

In our case ‘social behavior’ means that particles are able
to recognize one another as if they have names. Particles are
then trained on tasks that relate to their peer particles. We
draw inspiration from the approach of surprise minimiza-
tion; this means that particles are trained to predict the effect
of interactions with other particles, thus minimizing their
‘surprise’ when actually meeting them. In other words, the
particles increase the confidence of their impact on the envi-
ronment and of the environment on themselves. In a similar
manner, we also introduce an interaction of ‘general judge-
ment’ between particles, where a particle is trained to esti-
mate another particle’s success at precise self-replication. In
a social context this form of ‘fitness estimation’ may double
as a form of partner selection and may eventually form the
basis for deliberate information exchange, i.e., cooperation.
Effectively, we are able to show that (under certain circum-
stances) these social interactions can replace the previously
required explicit training for self-replication.

As training for these social interactions trivially requires
optimizing for a moving target, convergence or organized
group behavior is not easily observed. However, since we
consider it to be the nature of artificial chemistries to aim
for (and possibly exploit) emergent behavior, we implement
another technique to help the soup organize: a catalyst par-

ticle. By introducing a special particle that can influence all
other particles but cannot be influenced by them, we create
enough pressure on the particles’ evolution to observe a form
of organization. With a catalyst, we can thus observe simi-
lar stability patterns than originally reported by Gabor et al.
(2019) without explicit self-replication training but arising
only from social dynamics. We note that self-replication as
the designated result may not be the only viable task for
this setting; however, with the interpretation of replication
as the simplest form of natural ‘generational stability’, self-
replication was chosen for this work.

The main contributions of this paper thus are:

• We present and evaluate a viable approach to include so-
cial interactions between neural network particles in an
artificial chemistry. We show that these interactions alone
lead to stability in single particles but no observable emer-
gent behavior.

• We show that these social interactions can alleviate the
need for explicit self-replication training given that evolu-
tion pressure is provided from source other than training
(in our case a specially introduced catalyst particle).

Following this introduction we provide a brief overview
over additional related work (since we covered the young
field of neural network artificial chemistries fully in this in-
troduction). We then introduce the formal setting of our ar-
tificial chemistry and continue with a section containing the
experiments and results. Finally, we provide an outlook on
future possibilities and future work to bring them about.

Related Work
For the artificial life setting there are many fields of study
that qualify as related, from emergent multi-agent interac-
tions (Ritz et al., 2021) and self-organization in multi-agent
systems (Serugendo et al., 2005) to cooperative learning of
networks swarms (Van den Bergh and Engelbrecht, 2000),
just to name a few. In this section, however, we focus on
related applications of our core interaction: surprise mini-
mization. Surprise minimization is, in its simplest form, the
difference minimization between actual and predicted sen-
sor input. Adaptive systems minimize surprise to maintain
their states in constantly changing environments by adapt-
ing predictions or changing actions. The free-energy princi-
ple provides a mathematical formulation of this idea and has
the potential for a unified brain theory for action, percep-
tion, and learning of natural systems (Friston, 2010). It has
seen applications mainly in cognitive neuroscience (Holmes
et al., 2021), but also in control theory (Baltieri and Buck-
ley, 2019), reinforcement learning (Fountas et al., 2020), or
social cognition (Adams et al., 2022). Other researchers in
artificial intelligence took up the idea as well. Der and Mar-
tius (2012) show that controllers and world models of agents
can be trained with backpropagation using the prediction er-
ror, leading to self-regulated stability in the system. For ex-

Figure 1: Schematic representation of the network input for-
mat as partially sparse (inter-)actions ATK, SUR, and ESR,
which are formally defined as Interaction 1, Interaction 2,
and Interaction 3 with either a network M’s own weights or
a different network N ’s weights.

ample, Berseth et al. (2020) propose an unsupervised rein-
forcement learning approach based on the minimization of
surprise to learn behaviors for a variety of tasks. As we ob-
serve, it is essential that agents are situated in dynamic envi-
ronments with disruptive forces, requiring them to take ac-
tions to avoid surprise and to maintain homeostasis. Kaiser
and Hamann (2022) use simple evolutionary algorithms and
a reward for high prediction accuracy (i.e., low surprise) to
generate a variety of collective behaviors for robot swarms
and show that self-organization can be engineered by pre-
defining predictions. In this work, our neural networks are
used both as actors (i.e., influencing the weights of other
particles) and hypernetworks (cf. Ha et al., 2016) to predict
future inputs, i.e., weight vectors for themselves and others.

Setting
In this work we consider particle soups, where one is able to
observe interactions by building a population of m mutually
interacting network particles M1, . . . ,Mm. Different com-
binations and parameterizations of such individuals and their
various (inter-)actions produce emergent behavior compa-
rable to an artificial chemistry system (cf. Dittrich et al.,
2001) or artificial life system (cf. Adami and Brown, 1994;
Ofria and Brown, 1998). This means that a soup evolves
over a fixed amount of epochs, i.e., evolution steps. At ev-
ery epoch, different (inter-)action operators can be applied
to network particles in the population with a certain chance,
resulting in new particles and thus a changed soup. The gen-
eral setting follows that of Gabor et al. (2021), Randazzo
et al. (2021), and Gabor et al. (2022). For the sake of com-
pleteness we briefly recap the relevant material related to
particle soups introduced there.

Weightwise Application

Key to finding self-replicating neural network particles is
the notion of weightwise application (Gabor et al., 2022).
It allows us to call a neural network M with the weights
of another neural network N as input by simply calling M
once for every weight in N . We now assume that each
neural network M we discuss has 10 real-numbered inputs
and 1 real-numbered output so that it represents a function
M : R10 → R. For weightwise application, we will use the
first five inputs of the networks and we will discuss the use
of the other inputs later in this section.

We further assume a function id which assigns to ev-
ery neural network within our soup a unique identifier, e.g.,
id(M) ∈ R to represent said network M. We treat this real-
numbered values as IDs for the respective networks without
them implying any structure or ordering.

We also assume that every neural network M in our soup
adheres to the same dense-layered architecture (Goodfellow
et al., 2016) and can thus be fully described by giving its
weights M ∈ R26. Following the network’s architecture,
we also write the vector of weights M = ⟨vl,c,p⟩l,c,p struc-
tured according to the layers, cells, and cell connections of
the neural network so that each vl,c,p ∈ R is the network
weight assigned in layer l for neuron c to the connection to
neuron p in the previous layer.

We can now define the application of one network to an-
other as follows:

Definition 1 (application). Given neural networks M,N .
Let O = M◁N be the application of M to N given by

Ol,c,p = M
(
id(N), l, c, p,N l,c,p, 0, 0, 0, 0, 0

)
.

Self-Replication

Based on the application ◁ we can now trivially define self-
application as follows:

Definition 2 (self-application). Given a neural network M.
We call the neural network M′ = M ◁ M the self-
application of M.

In theory, the application ◁ has fixed points, i.e., there
exist M so that M◁M = M. In a similar way to other ar-
tificial chemistry setups (cf. Fontana and Buss, 1994), these
play a special role (Gabor et al., 2019). However, since our
particles are living in a continuous space, related work uses
a relaxed notion called ε-fixpoints:

Definition 3 (ε-fixpoint, self-replication (SR)). Given a
neural network M. Let ε ∈ R be the error margin for the
fixpoint property.1 We call M an ε-fixpoint iff for all l, c, p∣∣M′

l,c,p −Ml,c,p

∣∣ < ε where M′ = M◁M. We also say
that M is able to self-replicate.

1For this paper, we assume ε = 10−5.

Interactions
With networks interacting together in the context of a soup,
Gabor et al. (2019) define the interaction of applying and
substituting a randomly drawn partner particle to the pre-
dicting network as an attack. This interaction is given as:
Interaction 1 (attack (ATK)). Applied to two random net-
works M,N drawn from the soup at chance α, attacking
substitutes the weights of the attacked network M with the
weights given via M′ = N ◁M.

So far, this setting can be found almost identically in re-
lated work (cf. Gabor et al., 2022, e.g.). We now augment
the setup with an interaction for minimizing surprise and an
interaction for training an accurate estimation of the self-
replication ability of other particles. We thus add the predic-
tion of the effects of another particle’s attack on oneself as
an additional task using the other five inputs of the networks
in a way comparable to the setup of Gabor et al. (2021).
This allows us to train the accuracy of said prediction via
standard backpropagation for supervised learning, resulting
in the following new interaction:
Interaction 2 (minimize surprise (SUR)). Applied to two
random networks M,N drawn from the soup at chance β,
the particle M is trained to minimize the surprise S of be-
ing attacked by particle N . To this end, we compute the
predicted result M̂ of N ’s attack given via

M̂l,c,p = M
(
0, 0, 0, 0, 0, id(N), l, c, p,Ml,c,p

)
and the true result M′ of such an attack given via

M′ = N ◁M.

We can then compute the surprise

S =
∣∣∣∣∣∣M̂ −M′

∣∣∣∣∣∣
for a suitable distance measurement || || and minimize for S
via stochastic gradient descent.

Finally, we introduce a second new interaction that allows
particles not only to predict the results of imaginary attacks
but also to predict the results of self-replication in their peer
particles in order to connect our approach to the original goal
of finding self-replicating particles in neural network soups.
Interaction 3 (estimate self-replicability (ESR)). Applied to
two random networks M,N drawn from the soup at chance
γ, the particle M is trained to minimize the prediction loss
L for N ’s self-replication error. To this end, we compute the
predicted self-replication error Ê given via

Ê = M
(
id(N), 0, 0, 0, 0, id(N), 0, 0, 0, 0

)
and the true self-replication error E given via

E = ||N −N ◁N||

for a suitable distance measurement || ||. We can then mini-
mize for L = |Ê − E| via stochastic gradient descent.

For this ESR interaction, it is important to note that its
only parameter is the other network’s ID given via id(N)
and not any of its weights. That means that the only way
a network M can reliably estimate another network N ’s
precision at self-replication is by learning the right values
‘by heart’ over time. Thus, this interaction requires network
particles to really incorporate knowledge about the over net-
works. Furthermore note that in order to keep the networks
with and without ESR at the same size and architecture,
we are overloading the network inputs to implement ESR.
As can be seen from Interaction 3, we are passing N ’s ID
to the same inputs that usually receive the other network’s
ID in an interaction. To clearly signal the ESR case to the
network, however, we pass N ’s ID twice, i.e., through two
distinct inputs to the network M, to ensure that all internal
weights that encode ‘memory’ of the other network’s
identification (in the other (inter-)actions) are being used.
A schematic representation of the three different input vec-
tor formats as used for the soup actions is presented in Fig. 1.

Experiments
With the setting definitions in place, our primary concern is
the construction of a stable particle soup without the direct
use of self-replication (SR) training. We first consider an
initial population of 10 small network particles. The layer
architecture is kept reasonably simple with 10 input neu-
rons, one hidden layer of width 2, and one output neuron
for a total of 26 weights. Following the setup of Gabor et al.
(2022) we do not activate the layers nor do we use a bias, as
it has been shown in Illium et al. (2022) that activation func-
tions in small weight spaces like the one considered here
are negligible. For the first experiments we now only em-
ploy the actions ATK and SUR for interactions in the soup.
Any weight training is computed via the Stochastic Gradi-
ent Descent (SGD) optimizer by the Python pytorch library
(cf. Paszke et al., 2019) with a learning rate of 0.004 and a
momentum parameter of 0.9.

Fig. 2 (left) shows the development of the soup after mul-
tiple epochs, although for the purpose of this demonstration
we do not actually substitute the weight application pre-
dicted by the ATK actions. This prevents the system from
any danger of diverging, since no real weight-destabilizing
interactions are happening yet. The system would take a
similar form with actual attacks of very low frequency, e.g.,
α ≤ 0.001, since singular ATK interactions (Interaction 1) of
mostly stable particles lose impact eventually (Gabor et al.,
2022). Since SUR (Interaction 2) is trained every epoch
for each network with one randomly drawn partner, i.e.,
β = 1.0, any higher α-rate would promptly collapse the
whole system, as early weight applications are imprecise
enough to drastically impact the affected particles’ trajec-
tory. All following SUR interactions are therefore propor-
tionally ‘surprised’ by this particle’s performance, leading

to a large gradient update, which propagates through all fol-
lowing surprise estimations. Thus, in this state without any
form of explicit stability training (that is not dependent on
other networks), a couple of early attacks are enough to di-
verge a soup collective. Without true attacks, however, we
observe all particles developing steadily in place as would be
expected. The remaining degree of uncertainty as indicated
by the slightly curved trajectories is similar to the goal soups
discussed by Gabor et al. (2021), where similar states of
not-diverged but also not-quite-completely-converged soups
were also observed. The trajectory representation of these
(and the following) plots adopts the visual concept intro-
duced by Gabor et al. (2022), where a PCA dimensional-
ity reduction is applied to the weight vector M ∈ R26 to
show the numerical adjustment of the weight values in a
shared, easy-to-understand, two-dimensional weight space
(PCA X-dimension and Y-dimension) over evolution steps
(Z-dimension).

At this point we introduce a third action – estimating self-
replication ability (ESR) (Interaction 3) and the minimiza-
tion of the incurred loss – to the soup. Fig. 2 (right) shows
the effect on the particle trajectories, as they slowly diverge
from their initial positions. Similarly to how training the
soup only with the SUR action without any true action al-
ways causes a degree of uncertainty for the surprise of the
other networks, the act of additionally estimating the self-
replication ability ‘overpowers’ the stability induced by the
mutual SUR training and slowly propagates minor degrees of
instability through the whole system. This leads to the pro-
cess of divergence that is observed here (and is reported sim-
ilarly by Gabor et al., 2021, 2022; Illium et al., 2022), indi-
cated by the increasing magnitude of weight values and con-
sequently the extreme trajectory through the weight space.

Justification for the choice of network inputs. With all
relevant interactions defined and an understanding of the
soup interactions in place, we briefly interject a justification
of the id parameter choice in the particle’s input format as
shown in Fig. 1. We highlight the duplicate use of this pa-
rameter, once each for the actions ATK and SUR, and twice
even for the action ESR. Fig. 3 shows the evaluation in favor
of the inclusion of an extra id parameter for the ATK action,
decreasing the cumulative losses for surprise and (estimated)
self-replication with a fraction of the variance of the other
choices. The interpretation of this improvement follows
from the fact that the social aspects of this soup, predicting
others via SUR and providing predictions via (pretend-)ATK,
are both helped by the knowledge of the other particles, here,
explicitly trained with an identifier unique to each network
in the input vector. Initially we hypothesized that the use
of a single position for any occurring parameter id would
suffice, but, as previously observed by Gabor et al. (2021),
using dedicated input parameters proved superior and was
thus chosen for the remainder of this work.

Figure 2: (left) This soup consists of 10 network particles N : R10 → R with one hidden layer of two cells, which are
initialized randomly and are interacting solely via the minimize surprise (SUR) action over 50,000 evolution steps. Each
particle randomly draws one other network to minimize surprise in every epoch. (right) A different soup with 10 similarly
constructed particles, which additionally includes the estimate self-replication (SR) (ESR) interaction. In doing so, once per
epoch each particle – with a probability of γ = 0.5% – randomly chooses one other network and minimizes the expectation of
the partner’s current SR loss. The process is run until almost diverged (here at epoch 7000). In these two different settings –
due to the resulting difference in the weight values – the scale of the weight space shown here is considerably expanded and
not comparable anymore. In both plots we show the weights per network visualized in a two-dimensional weight space based
on the transformed X- and Y-axes derived via PCA dimensionality reduction over time.

Figure 3: Cumulative total losses of soups with 10 particles each. We test the influence of including an id parameter in the
attack (ATK) action to signal the identity of the attacked network. We show the mean and 95% confidence intervals for three
different soup runs (with different seeds) for the cumulative surprise (left, ms) of each particle for all other particles, the own
self-replication loss (middle, sr), and the cumulative estimated replication loss (right, est-sr), again, of each particle for all
other particles (X-axis) over evolution steps (Y-axis). Three cases were compared: (blue), where we include an id parameter
but reuse the same input position as the id parameter used for SUR, (orange), where the additional id parameter is placed on a
separate input position, and (green), where we do not include the identity of the attacked network. We observe that adding a
separate id outperforms the other cases both in terms of loss optimization as well as reducing variance. A catalyst particle was
included with attack rate α = 0.01.

Using a catalyst to encourage emergent group behavior.
To instigate a higher degree of soup stability we observe
that we can force all particles to a common sub-region of
the weight space, simply by adding a single external parti-
cle through which we intend to exert something akin to se-
lection pressure on the soup. In our case the particle’s role
consists of randomly applying the ATK action on randomly
selected networks, forcing convergence or divergence. In
doing so, we observe the emergence of more complex be-
haviors and social structures without the added particle ever
changing, which is why we decided on the name ‘catalyst’.
Similar to the concept of the non-modifiable beacon par-
ticle shown in Gabor et al. (2021), the catalyst particle is
non-modifiable and thus a randomized but constant influ-
ence for the particles to consider. Fig. 4 shows the full set-
ting with a catalyst (which is the only attacking particle) and
the peer particles, which (besides getting attacked) partici-
pate in SUR and ESR interactions with each other. In Fig. 4
(left plot) we can observe the early stages of this process,
where singular ATK actions of the catalyst are clearly vis-
ible as projections in one sub-space. This ‘clustering’ into
closer proximity then allows the population to better opti-
mize their mutual surprise, resulting in the convergent state
observed in later stages of the evolution, depicted in Fig. 4
(right plot). We can also confirm the relation of distance in
the weight space to the initial mutual surprise. Fig. 5 shows
the heatmap of all particles’ mutual surprise losses after the
first epoch (including the catalyst), where surprise for, e.g.,
particles 2 and 3 is considerably higher – which does corre-
spond to the pink and purple particle trajectories in the PCA
plot of Fig. 4 (left), which start more distanced from the oth-
ers. This then also confirms why the ‘clustering’ ability of
the catalyst, which draws the population together, is respon-
sible for the convergence. To reiterate the importance of the
catalyst, Fig. 6 shows the direct comparison between the sta-
bility of soups with and without a catalyst as indicated by
the improved minimization of the various losses (cumula-
tive surprise, self-replication, and estimated SR ability) over
the course of the soup evolution. We observe non-negligible
variance in both settings, which is mostly explained by the
different number and impact of catalyst ATK actions in dif-
ferent random generator seedings. Especially the total sur-
prise loss (Fig. 6, left plot) shows the premature convergence
of a soup without catalyst that stagnates to some constant
degree of remaining uncertainty without finally converging.
The ‘clustering’ of the ATK actions in contrast do accom-
plish convergence eventually.

Introducing dynamics into the catalyst. Finally, we ex-
plore the idea of training the catalyst itself to observe if and
in what way the soup can adjust to resulting dynamics. Fig. 7
shows one iteration of this experiment, where the catalyst
very slowly performs self-replication training as is done in
related work (which is the only interaction that can be ex-

ecuted by a single particle on its own). To avoid having
the SR training immediately perfect the catalyst’s predic-
tions (SR training is known to produce SR fixpoints within
comparably few iterations; cf. Gabor et al., 2022), we limit
the training to occur with the same rate as the ATK actions,
i.e., at a chance of 0.1. Over the course of 500,000 evolution
steps we observe two phenomena in this dynamic soup:

In the earlier stages of evolution (Fig. 7, left plot) we ob-
serve the particles again being ‘drawn’ towards a similar
position in the weight space, but then they follow the ad-
justed predictions of the catalyst as the SR training modi-
fies its weights and therefore the resulting ATK projections.
Remembering how impactful the repeated ATK action is on
stationary ‘stable’ systems, it is remarkable how far and
how consistently the catalyst is able to draw the whole soup
through the state space without any divergence. The increas-
ing SR ability due to the SR training is certainly a factor
that helps with keeping the dynamic movement predictable
enough such that the SUR interaction of the individual net-
works remains learnable without causing divergence.

Later on, we do observe divergent trajectories for all re-
maining particles except the catalyst in Fig. 7 (right plot),
where the soup appears to be ‘let go’ of the previously con-
sistent navigation through the weight space. We suspect the
resulting divergent state is similar to the process occurring
in Fig. 2 (right plot), just on a larger scale. By observing the
size of the PCA axis in Fig. 7 (right plot) we can conclude
that – after the catalyst particle has finished its SR training
and the ATK actions produce almost perfect predictions, thus
losing any weight displacement ability – the other particles
return to their interactions of only training SUR and ESR but
this time on peer particles with more complex weight values
(and possibly a ‘momentum’ from the navigated travel of
the catalyst training), leading to unexpectedly large losses,
large gradient updates, and finally divergence. We reckon
that producing long-term stable interactive soups and dy-
namic processes to navigate such populations safely through
the weight space is an interesting topic for future work.

Conclusion
In this work we have adopted the neural network particle
soup of Gabor et al. (2019) and extended the approach to
rely less on self-replication as the primary component of
stability training and more on the social aspect of the soup
interactions. We integrated two new actions into the set-
ting: firstly, an estimation of other networks’ self-replication
ability, based purely on learned memory of the populations
unique identifiers; and, secondly, we introduced the concept
of minimizing surprise by predicting another network’s be-
havior – given a set of weights – to simulate a trained pre-
vention of influence of a system on the individual. The
influence in our soup was exerted in the form of ‘selec-
tion pressure’-like attack actions. While attacks in previous
works were modeled as a (somewhat rare) peer interaction,

Figure 4: Two perspectives of a soup with 10 network particles N : R10 → R interacting randomly with the actions SUR
(β = 1.0) and ESR (γ = 1.0). We include a catalyst particle (black trajectory) that does not change over time but simply
applies the ATK action randomly once per epoch with a chance of α = 0.01. To highlight the early stages of the convergence
process we show the evolution once after 1000 epochs (left) and a second time after 10,000 rounds of evolution (right). All
network weights are depicted in the same two-dimensional weight space based on the transformed X- and Y-axes derived via
PCA dimensionality reduction.

Figure 5: Heatmap of the the mutual surprise losses between
a soup of 10 particles (with IDs 0–9) and a catalyst particle
(with ID 10, applying the ATK action with α = 0.01) af-
ter the very first evolution step of the experiment depicted
in Fig. 4. The particles most surprised (and surprising) are
the ones positioned further away in the weight space during
initialization.

in this work we focus on an external catalyst particle that
fulfills the role of applying random attacks on the popula-
tion. While minimal-surprise training alone does provide a
form of stability, with the inclusion of the catalyst’s attacks

we can observe emergent focus of the particles’ weights into
similar sub-spaces. This behavior leads to improved con-
vergence and minimized self-replication loss as a beneficial
side-effect.

The notion of self-replication in our work is strongly in-
fluenced by Dawkins (2016) in that it focuses on the ability
to simply copy information. We take a first step towards ob-
serving other properties associated with self-replication (like
metabolism, e.g.) by expanding a particle’s feedback loop
for self-sufficient development through its peers as we im-
plement surprise minimization in place of self-training. Sur-
prise minimization in uncertain systems may also be helpful
for simulating and enforcing interactions between inherently
stochastic processes like, e.g., the interaction of quantum
particles in the recently emerging field of quantum comput-
ing (cf. Nielsen and Chuang, 2010).

In the future we intend to test whether weight modifica-
tion instead of weight application as a result of the ATK ac-
tion could also be used. This would drive the particle setting
even more in the direction of hypernetworks (cf. Ha et al.,
2016) by training to predict a useful gradient instead of dis-
carding and substituting the whole weight set. This would
make singular interactions less dangerous and would allow
for more fine-grained weight direction.

We would also like to expand on the catalyst concept and
the ability to dynamically influence the population. Future
work could include a study on how to model and modify the
catalyst so that it remains impactful over the whole evolution

Figure 6: Comparison of cumulative losses of surprise (left, ms) of each particle for all other particles, the own self-replication
loss (middle, sr), and the cumulative estimated replication loss (right, est-sr) of all other particles, depending on whether we
include the catalyst particle (orange) or not (blue). We show the mean and 95% confidence intervals for three different soup
initializations (with three different seeds) up to epoch 5000 on the Y-axis and the evolution steps on the X-axis.

Figure 7: Two perspectives of a soup with 10 network particles N : R10 → R showing the emergent interactions of the actions
SUR (β = 1.0) and ESR (γ = 0.5) as well as the influence of the catalyst particle (α = 0.01, central blue trajectory). In
contrast to the setting discussed in Fig. 4, in this case the catalyst indeed changes its weights via the process of self-replication
training, indicated by the slightly curved trajectory. The process is shown once in the stage of the soup after 50,000 epochs
(left) and once much later after 500,000 evolution steps (right). Here, the particles attempt to minimize surprise by trying to
accommodate the changing projection of the ATK action (of the catalyst), resulting in this moving-cluster pattern observed here.
As with the other figure, network weights are depicted in the same two-dimensional weight space based on the transformed X-
and Y-axes derived via PCA dimensionality reduction.

while being able to navigate the population, possibly even to
manually defined points in the weight space.

Finally, to better understand the soup system as a whole
we would like to eventually integrate other components and
actions previously defined by Gabor et al. (2021, 2022) and
examine the influence of including, e.g., a beacon particle or
the learn-from interaction, which were purposefully omitted
in this work as to not obscure the comparatively subtle effect
of surprise on the soup. However, combining these actions
would allow us to gain further insight on the larger picture
of artificial self-organization.

Acknowledgements
This work was partially funded by the QuCUN (13N16196)
project of the German Federal Ministry of Education and
Research (BMBF) funding program “Quantum Technolo-
gies – from basic research to market” and partially sup-
ported by the German Federal Ministry of Education and
Research (BMBF, SCADS22B) and the Saxon State Min-
istry for Science, Culture and Tourism (SMWK) by funding
the competence center for Big Data and AI “ScaDS.AI Dres-
den/Leipzig”.

References
Adami, C. and Brown, C. T. (1994). Evolutionary learning in the 2d

artificial life system ‘avida’. In Brooks, R. A. and Maes, P.,
editors, Artificial Life IV, pages 377–381. MIT Press, Cam-
bridge, MA.

Adams, R. A., Vincent, P., Benrimoh, D., Friston, K. J., and Parr,
T. (2022). Everything is connected: Inference and attractors
in delusions. Schizophrenia Research, 245:5–22. Computa-
tional Approaches to Understanding Psychosis.

Baltieri, M. and Buckley, C. L. (2019). Pid control as a process
of active inference with linear generative models. Entropy,
21(3).

Berseth, G., Geng, D., Devin, C., Rhinehart, N., Finn, C., Jayara-
man, D., and Levine, S. (2020). SMiRL: Surprise minimiz-
ing reinforcement learning in dynamic environments. arXiv
preprint arXiv:1912.05510.

Chang, O. and Lipson, H. (2018). Neural network quine. In Artifi-
cial Life Conference Proceedings. MIT Press.

Dawkins, R. (2016). The selfish gene. Oxford university press.

Der, R. and Martius, G. (2012). The Playful Machine: Theoreti-
cal Foundation and Practical Realization of Self-organizing
Robots. Springer, Berlin, Heidelberg.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistries—a review. Artificial life, 7(3):225–275.

Fontana, W. and Buss, L. W. (1994). What would be conserved if”
the tape were played twice”? Proceedings of the National
Academy of Sciences, 91(2):757–761.

Fountas, Z., Sajid, N., Mediano, P., and Friston, K. (2020).
Deep active inference agents using monte-carlo methods. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and
Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 11662–11675. Curran Associates,
Inc.

Friston, K. (2010). The free-energy principle: A unified brain the-
ory? Nature Reviews Neuroscience, 11(2):127–138.

Gabor, T., Illium, S., Mattausch, A., Belzner, L., and Linnhoff-
Popien, C. (2019). Self-replication in neural networks. In
ALIFE 2019: The 2019 Conference on Artificial Life, pages
424–431. MIT Press.

Gabor, T., Illium, S., Zorn, M., Lenta, C., Mattausch, A., Belzner,
L., and Linnhoff-Popien, C. (2022). Self-Replication in Neu-
ral Networks. Artificial Life, pages 205–223.

Gabor, T., Illium, S., Zorn, M., and Linnhoff-Popien, C. (2021).
Goals for self-replicating neural networks. In ALIFE 2021:
The 2021 Conference on Artificial Life. MIT Press.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learn-
ing. MIT press.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv
preprint arXiv:1609.09106.

Holmes, E., Parr, T., Griffiths, T. D., and Friston, K. J. (2021).
Active inference, selective attention, and the cocktail party
problem. Neuroscience & Biobehavioral Reviews, 131:1288–
1304.

Illium, S., Zorn, M., Lenta, C., Kölle, M., Linnhoff-Popien, C., and
Gabor, T. (2022). Constructing organism networks from col-
laborative self-replicators. arXiv preprint arXiv:2212.10078.

Kaiser, T. K. and Hamann, H. (2022). Innate motivation for robot
swarms by minimizing surprise: From simple simulations
to real-world experiments. IEEE Transactions on Robotics,
38(6):3582–3601.

Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation
and Quantum Information: 10th Anniversary Edition. Cam-
bridge University Press.

Ofria, C. and Brown, C. (1998). The avida user’s manual. In
Adami (1998), The Avida software is publicly available at
ftp.krl.caltech.edu/pub/avida.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Des-
maison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
and Chintala, S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural In-
formation Processing Systems 32, pages 8024–8035. Curran
Associates, Inc.

Prokopenko, M. (2013). Guided self-organization: Inception, vol-
ume 9. Springer Science & Business Media.

Randazzo, E., Versari, L., and Mordvintsev, A. (2021). Recursively
fertile self-replicating neural agents. In ALIFE 2021: The
2021 Conference on Artificial Life. MIT Press.

Ritz, F., Ratke, D., Phan, T., Belzner, L., and Linnhoff-Popien,
C. (2021). A sustainable ecosystem through emergent coop-
eration in multi-agent reinforcement learning. In Artificial
Life Conference Proceedings 33, volume 2021, page 74. MIT
Press, One Rogers Street, Cambridge, MA.

Serugendo, G. D. M., Gleizes, M.-P., and Karageorgos, A. (2005).
Self-organization in multi-agent systems. The Knowledge en-
gineering review, 20(2):165–189.

Van den Bergh, F. and Engelbrecht, A. P. (2000). Cooperative
learning in neural networks using particle swarm optimizers.
South African Computer Journal, 2000(26):84–90.

