
Resilient Multi-Agent Reinforcement Learning with
Adversarial Value Decomposition

Thomy Phan,1 Lenz Belzner,2 Thomas Gabor,1
Andreas Sedlmeier,1 Fabian Ritz,1 Claudia Linnhoff-Popien1

1LMU Munich,
2MaibornWolff

thomy.phan@ifi.lmu.de

Abstract

We focus on resilience in cooperative multi-agent systems,
where agents can change their behavior due to udpates or
failures of hardware and software components. Current state-
of-the-art approaches to cooperative multi-agent reinforce-
ment learning (MARL) have either focused on idealized set-
tings without any changes or on very specialized scenar-
ios, where the number of changing agents is fixed, e.g., in
extreme cases with only one productive agent. Therefore,
we propose Resilient Adversarial value Decomposition with
Antagonist-Ratios (RADAR). RADAR offers a value decom-
position scheme to train competing teams of varying size for
improved resilience against arbitrary agent changes. We eval-
uate RADAR in two cooperative multi-agent domains and
show that RADAR achieves better worst case performance
w.r.t. arbitrary agent changes than state-of-the-art MARL.

Introduction
Distributed systems consist of multiple separated compo-
nents that collaborate to accomplish a common task (Tanen-
baum and Van Steen 2007). Distributed autonomous systems
can be formulated as cooperative multi-agent system (MAS),
which can be realized with methods of reinforcement learn-
ing (RL) (Foerster et al. 2018; Rashid et al. 2018).

Multi-agent RL (MARL) potentially offers better scala-
bility and resilience against changing agents compared to
single-agent RL. We define an agent change either as up-
date or failure. E.g., some agents may be updated with new
software or temporarily be replaced by other versions due to
maintainance. In both cases, we would expect the remain-
ing MAS to collaborate with these novel agents. On the
other hand, agents might behave erroneously due to hard-
ware or software failures. In this case, we would expect the
remaining MAS to degrade gracefully without failing en-
tirely (Stone and Veloso 2000). Intuitively, resilience should
improve with more agents due to more available resources
for compensation (Tanenbaum and Van Steen 2007).

Although resilience has been long recognized as a
main motivation for realizing cooperative MAS (Stone and
Veloso 2000; Panait and Luke 2005; Buşoniu, Babuška, and
De Schutter 2010), most state-of-the-art approaches to co-
operative MARL have focused on optimizing idealized sce-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

narios, where an agent only faces the same or similar agents
as during training (Foerster et al. 2018; Gupta, Egorov, and
Kochenderfer 2017; Rashid et al. 2018). This bears the risk
of overfitting, where a MAS can entirely fail when some
agents significantly change their behavior, which could be
fatal in safety critical environments, where such failures may
have catastrophic consquences (Uesato et al. 2019).

Some work on resilient MARL based on adversarial learn-
ing (Littman 1994; Li et al. 2019; Phan et al. 2020) has fo-
cused on specialized settings with a fixed number of adver-
sary agents, e.g., where a single productive agent remains.
These approaches lack flexibility, which is required, when
arbitrary portions of the MAS can change. Furthermore, they
introduce new tunable hyperparameters like the fraction of
adversaries or the degree of adversarial behavior, which fur-
ther increase sensitivity w.r.t. unexpected scenarios.

In this paper, we propose Resilient Adversarial value De-
composition with Antagonist-Ratios (RADAR). RADAR of-
fers a value decomposition scheme to train competing teams
of varying size for improved resilience against arbitrary
agent changes. Our main contributions are:
• A simple mechanism to train adversarial agents with vari-

able team sizes during training, which is necessary to cre-
ate MAS that can potentially cope with arbitrary agent
changes. Unlike prior work on resilient MARL, RADAR
does not introduce any new hyperparameters, thus can be
easily integrated into existing RL frameworks.

• An agent test scheme to consistently evaluate perfor-
mance and resilience against changing agents in cooper-
ative MAS in a fair way, which is inspired by prior work
on single-agent RL (Badia et al. 2020; Jordan et al. 2020).

• An empirical evaluation of RADAR in two cooperative
multi-agent domains and a comparison with state-of-the-
art MARL w.r.t. the proposed test scheme. While being
competitive against state-of-the-art MARL in cooperative
settings, RADAR achieves better worst case performance
when facing a variable number of previously unknown ad-
versary agents at test time.

Background
Problem Formulation
MAS can be formulated as partially observable Markov
gameM = 〈D,S,A,P,R,Z,Ω〉, whereD = {1, ..., N} is

a set of agents, S is a set of states st, A = A1 × ...×AN is
the set of joint actions at = 〈at,1, ..., at,N 〉, P(st+1|st, at)
is the transition probability, R(st, at) = 〈rt,1, ..., rt,N 〉 ∈
RN is the joint reward with rt,i being the reward of agent
i ∈ D, Z is a set of local observations zt,i for each agent
i, and Ω(st, at) = zt+1 = 〈zt+1,1, ..., zt+1,N 〉 ∈ ZN is
the subsequent joint observation. Each agent i maintains an
action-observation history τt,i ∈ (Z × Ai)t. π(at|τt) =
〈π1(at,1|τt,1), ..., πN (at,N |τt,N)〉 is the joint policy, where
πi(at,i|τt,i) is the local policy of agent i. πi can be evalu-
ated with a value function Qπi (st, at) = Eπ[Gt,i|st, at] for
all st ∈ S and at ∈ A, where Gt,i =

∑∞
k=0 γ

krt+k,i is the
return of agent i, and γ ∈ [0, 1) is the discount factor. We
denote the joint action and policies without agent i by at,−i
and π−i respectively. The goal of each agent i is to find a
best response π∗i which maximizes Qπi given π−i.

Policy Gradient Reinforcement Learning
Policy gradient RL is a popular approach to approximate
best responses π∗i for each agent i. A function approxima-
tor π̂i,θ with parameters θ is trained with gradient ascent on
an estimate of J = Eπ[G1,i]. Most policy gradient methods
use gradients g of the following form (Sutton et al. 2000):

g = Aπi (st, at)∇θlogπ̂i,θ(at,i|τt,i) (1)

where Aπi (st, at) = Qπi (st, at) − V πi (st) is the advantage
function and V πi (st) = Eπ[Gt,i|st] is the state value func-
tion of agent i. Actor-critic approaches often approximate
Âi ≈ Aπi by replacing Qπi (st, at) with Gt,i and V πi with
Eπi [Qπi].Qπi can be approximated with a critic Q̂i,ω and pa-
rameters ω using value-based RL (Watkins and Dayan 1992;
Mnih et al. 2015). For simplicity, we omit the parameter in-
dices θ, ω and write π̂i, Q̂i instead.

Independent Learning
Q̂i can be learned independently using single-agent RL on
at,i and τt,i (Tan 1993; Leibo et al. 2017). These local ap-
proximations can be used for each agent’s policy π̂i to per-
form gradient ascent according to Eq. 1 leading to the inde-
pendent actor-critic (IAC) approach (Foerster et al. 2018).

IAC offers optimal scalability w.r.t. N but violates the
Markov assumption due to non-stationarity caused by simul-
taneously learning agents (Laurent et al. 2011).

Centralized Training Decentralized Execution
For many problems, training usually takes place in a lab-
oratory or in a simulated environment, where global infor-
mation is available. State-of-the-art MARL exploits this fact
to approximate centralized value functions Q̂i, which condi-
tion on global states st and joint actions at, and use them as
critic in Eq. 1 (Lowe et al. 2017). While Q̂i is only required
during training in order to learn local policies, π̂i itself only
conditions on the local history τt,i, thus it can be executed in
a decentralized way. This paradigm is known as centralized
training and decentralized execution (CTDE).
Q̂i can be approximated separately for each agent i while

integrating global information, in contrast to IAC, to learn

best responses (Lowe et al. 2017). This approach lacks a
multi-agent credit assignment mechanism for training agent
teams, where all agents observe the same reward signal.

COMA approximates a single value function Q̂ per
team to compute agent-wise counterfactual baselines
V πi (st) =

∑
at,i∈Ai π̂i(at,i|τt,i)Q̂(st, 〈at,i, at,−i〉) for in-

dividual credit assignment (Foerster et al. 2018).
The centralized Q̂ can be factorized to approximate in-

dividual Q̂i for each agent i in order to update π̂i accord-
ing to Eq. 1 in a coordinated way. Value decomposition net-
work (VDN) is the simplest factorization method, where Q̂
is defined by

∑
i∈D Q̂i(τt,i, at,i) (Sunehag et al. 2018). Al-

ternatively, there exist non-linear factorization methods like
QMIX or QTRAN (Rashid et al. 2018; Son et al. 2019).

While CTDE mitigates the non-stationarity issue of in-
dependent learning due to exploiting the Markov property
of states, most approaches based on deep learning require a
fixed number of agentsN due to the predefined input dimen-
sion of st and at required by Q̂(st, at) (Lowe et al. 2017;
Foerster et al. 2018; Rashid et al. 2018; Son et al. 2019).

Adversarial Reinforcement Learning
In zero-sum games, there are N = 2 agents with oppos-
ing goals. The value functions of agent i and j (and anal-
ogously the rewards) are defined by Qπi = −Qπj . A min-
imax equilibrium policy of agent i is defined by π∗i =
argmaxπiminπjQ

∗
i , which corresponds to a best response to

the worst case, represented by π∗j (Littman 1994).
Adversarial RL approaches attempt to approximate π∗i

with alternating optimization or reformulation of the min-
imax objective by applying standard RL techniques to each
agent (Littman 1994; Pinto et al. 2017; Li et al. 2019).

Related Work
Adversarial Reinforcement Learning
Adversarial learning is a popular paradigm to train two op-
ponents alternately to improve each other’s performance and
robustness (Goodfellow et al. 2014; Pinto et al. 2017). Self-
play RL is the simplest form of adversarial RL, where a
single agent is trained to play against itself to ensure an
adequate difficulty level and steady convergence to robust
policies (Samuel 1959; Tesauro 1995; Silver et al. 2016). In
(single-agent) RL, the environment can be modeled as ad-
versary by adding disturbances to confront the original agent
with worst case scenarios (Morimoto and Doya 2001; Ra-
jeswaran et al. 2017; Pinto et al. 2017). These adversarial
disturbances can be realized, e.g., with RL or coevolution-
ary approaches (Gabor et al. 2019; Wang et al. 2019).

Our work is mainly based on adversarial learning. In con-
trast to single-agent RL, where external changes can only
occur within the environment, we focus on agent changes
in cooperative MAS. For that, we integrate adversary agents
into the training process in order to improve resilience.

Multi-Agent Reinforcement Learning
MARL is a long-standing AI research area with various
approaches (Tan 1993; Panait and Luke 2005; Foerster

Figure 1: RAT and RADAR scheme for N = 4. Left: each agent has a protagonist (blue) and an antagonist (red) representation.
Middle: mixed games My,mix are generated by randomly sampling Rant for each phase. Right: f̂i are updated in epochs using
VDN either for protagonists or antagonists. Note that the number of protagonists and antagonists can vary depending on Rant.

et al. 2018; Son et al. 2019). While cooperative MARL has
achieved impressive results in challenging domains, most
approaches have been only evaluated with the same or sim-
ilar agents as encountered during training. Thus, it remains
unclear if these approaches offer resilience against arbitrary
agent changes, which are expectable in the real world.

There is some prior work towards resilient MARL:
Minimax-Q was proposed in (Littman 1994) as an adapta-
tion of Q-Learning for zero-sum games. While guarantee-
ing convergence to safe policies w.r.t. worst case opponents,
Minimax-Q becomes intractable if the (joint) action space of
the opponent j is large. (Li et al. 2019) proposes M3DDPG,
which considers extreme cases, where each agent i consid-
ers itself the sole productive agent, while all other agents
are modeled as adversaries who attempt to minimize Qπi .
M3DDPG can lead to poor policies, if the problem is too dif-
ficult or even unsolvable for single productive agents, lead-
ing to insufficient training signal. (Phan et al. 2020) proposes
ARTS, where productive and adversary agents are trained
simultaneously according to a fixed adversary ratio, since
most CDTE approaches need a predefined input dimension
to approximate Q̂ ≈ Qπ . ARTS can improve resilience
against agent failures with adequately chosen adversary ra-
tios. However, an ideal ratio needs to be known a priori,
which is an unrealistic assumption. Furthermore, a fixed ra-
tio can lead to sensitive policies whenN is sufficiently large.

We propose an adversarial value decomposition scheme,
where the number of productive and adversary agents can
change dynamically during training. Furthermore, we pro-
pose an agent test scheme to evaluate performance and re-
silience of MARL approaches in a fair way.

Methods
Terminology
We focus on mixed (cooperative-competitve) games Mmix,
where D = Dpro ∪ Dant with Dpro ∩ Dant = ∅ (Lowe et al.

2017; Phan et al. 2020). Dpro is a team of productive or pro-
tagonist agents, which need to accomplish a certain (cooper-
ative) task. Dant is a team of antagonist agents representing
(adversarial) agent changes in the MAS. For all protagonists
i ∈ Dpro and for all antagonists j ∈ Dant the corresponding
rewards are defined by rt,i = rt,pro = −rt,j . The protago-
nist return Gt,pro is computed analogously to the individual
return Gt,i using rt,pro as rewards and γ as discount factor.

Furthermore, we define an antagonist-ratio Rant = |Dant|
|D| .

If Rant = 0, then Mmix is fully cooperative with D = Dpro
and a single global reward rt,i = rt,pro for all agents i ∈ D.

We use f̂i = 〈π̂i, Q̂i〉 as general notation for the learnable
function representation of agent i wherever possible.

Randomized Adversarial Training
Most approaches towards resilient MARL focus on particu-
lar failure scenarios with a fixedRant (Littman 1994; Li et al.
2019; Phan et al. 2020), which has several drawbacks: First,
Rant must be known a priori or extensively tuned, which is
generally not feasible. Second, a fixed Rant during training
can lead to inflexible behavior when facing a variable num-
ber of changing agents, which can be expected in real-world
scenarios. Third, Rant can have a huge impact on the train-
ing quality itself, e.g., if Rant is too large, the MAS problem
becomes too difficult to learn any meaningful policy.

Thus, we regard a randomized adversarial training (RAT)
scheme. Since arbitrary agent changes can occur in a MAS,
we provide a protagonist and antagonist representation for
each agent. We maintain a pool f̂pro = 〈f̂1,pro, ..., f̂N,pro〉 of
protagonist and a pool f̂ant = 〈f̂1,ant, ..., f̂N,ant〉 of antag-
onist representations, which are trained in T phases sim-
ilarly to (Pinto et al. 2017). At each phase x, we ran-
domly sample Rant ∈ [0, 1) from a uniform distribution
U to run Ne episodes of different mixed games My,mix,
where b(1−Rant)Nc protagonist policies π̂i,pro represent-
ing Dy,pro and dRantNe antagonist policies π̂j,ant represent-

Algorithm 1 Randomized Adversarial Training (RAT)

1: procedure RAT(D, N, f̂pro, f̂ant,Ψ)

2: Initialize parameters of f̂pro and f̂ant
3: for phase x = 1, T do
4: Sample Rant ∼ U . uniform sampling
5: for episode y = 1, Ne do
6: Dy,ant ← sample dRantNe agents from D
7: Dy,pro ← {i ∈ D|i 6∈ Dy,ant}
8: for i = 1, N do . Create My,mix
9: if i ∈ Dy,ant then

10: πi ← π̂i,ant . from f̂i,ant

11: if i ∈ Dy,pro then
12: πi ← π̂i,pro . from f̂i,pro

13: π ← 〈π1, ..., πN 〉
14: Run one My,mix episode with joint policy π
15: Store ey,t = {〈st, zt, at, rt,pro〉} and Dy,pro

16: if x mod 2 = 1 then
17: Update f̂i,pro with Ψ ∀i ∈ Dy,pro w.r.t. ey,t
18: else
19: Update f̂i,ant with Ψ ∀i ∈ Dy,ant w.r.t. ey,t

ing Dy,ant with i 6= j are randomly selected. Each episode
y can be considered a zero-sum game between Dy,pro and
Dy,ant. After each phase, either f̂pro or f̂ant is updated in
alternating epochs w.r.t. the generated experience ey,t =
{〈st, zt, at, rt,pro〉} while the other pool is kept fixed.

The complete formulation of RAT is given in Algorithm
1, where D is the set of agents of the original MAS (given
Rant = 0), N = |D| is the number of agents, f̂pro and f̂ant
are the learnable protagonist and antagonist representations
respectively, and Ψ is an optimization or MARL algorithm.
Due to its simplicity, we do not consider RAT a major contri-
bution but a necessary preliminary and baseline for RADAR,
which is introduced in the next section.

Resilient Adversarial Value Decomposition
Ψ in Algorithm 1 can be easily set to IAC or other indepen-
dent learning algorithms, since RAT requires Ψ to be flexi-
ble w.r.t. the number of protagonists and antagonists, which
can vary between each phase depending on Rant. Using in-
dependent learning for RAT comes with the non-stationarity
issue and the lacking credit assignment w.r.t. to (protago-
nist and antagonist) agent teams. Most CTDE approaches
require a fixed team size due to the predefined input dimen-
sion of Q̂ ≈ Qπ depending on st and the joint action at
(Lowe et al. 2017; Foerster et al. 2018; Rashid et al. 2018).

Therefore, we propose RADAR, a CTDE scheme to ap-
proximate protagonist and antagonist policies with variable
Rant based on VDN (Sunehag et al. 2018). VDN approxi-
mates Qπ(st, at) with Q̂(τt, at) =

∑
i∈D Q̂i(τt,i, at,i) for

cooperative MAS, where τt = 〈τt,1, ..., τt,N 〉 is the joint
history. Although we focus on mixed games My,mix, Qπ can
be obviously only approximated with cooperating agents1.

1Naively integrating adversary value functions into Q̂ could

Thus, we approximate Q̂pro and Q̂ant for protagonists and
antagonists respectively using separate VDN instances.

Given RAT in Algorithm 1, we can approximate Q̂pro in
protagonist epochs (line 17) with the following term:∑
i∈Dy,pro

Q̂i,pro(τt,i, at,i) = Ey,π[
|Dy,pro|
N

Gt,pro|st, at] (2)

where Gt,pro is the protagonist return and |Dy,pro|
N is used to

normalize Gt,pro w.r.t. the number of participating protag-
onists in episode y, because the scale of Gt,pro could give
more weight to settings where Rant is small.

Analogously, we can approximate Q̂ant in antagonist
epochs (line 19 of Algorithm 1) with the following term:∑
i∈Dy,ant

Q̂i,ant(τt,i, at,i) = Ey,π[−
|Dy,pro|
N

Gt,pro|st, at] (3)

which approximates Q̂ant = −Q̂pro.
The terms of Eq. 2 and 3 can be approximated via end-

to-end training of Q̂i,pro and Q̂i,ant using backpropagation
(Sunehag et al. 2018). Q̂i,pro and Q̂i,ant can be used to de-
rive the corresponding local policies, either via multi-armed
bandits applied to the values or via policy gradient methods
according to Eq. 1. The main components of RADAR and
their integration into RAT are visualized in Fig. 1.

Although non-linear factorization methods have been pro-
posed in (Rashid et al. 2018; Son et al. 2019), VDN of-
fers some advantages in our context: Regarding Eq. 2 and
3, VDN just approximates a sum which is not bounded by
a specific number of agents, thus being able to deal with
variable team sizes of Dy,pro and Dy,ant. Normalizing re-
turns w.r.t. Rant is straightforward in VDN due to the linear
decomposition unlike in the non-linear case. Furthermore,
VDN does neither introduce additional learnable parame-
ters (e.g., additional neural networks) nor hyperparameters,
which improves efficiency w.r.t. computation and tuning. We
are still aware that adapting non-linear factorization meth-
ods for RAT could lead to even more powerful approaches
towards resilient MARL, which we defer to future work.

Discussion of RAT and RADAR
RAT and RADAR offer simple mechanisms to train resilient
MAS and can be easily combined with existing RL algo-
rithms (value- or policy-based) to train π̂i. Neither RAT nor
RADAR introduce new hyperparameters (RAT uses uniform
sampling for Rant and RADAR uses VDN without addi-
tional approximators or objectives), thus the tuning com-
plexity completely depends on the underlying RL algorithm.

Given the uniform sampling of Rant and 2N agent rep-
resentations (N for the protagonists and N for the antago-
nists), the expected computational complexity of RADAR is
O(N) because ERant∼U [Rant] = 0.5. The worst case com-
plexity is O(2N) (when Rant = 0 in each protagonist epoch
and close to 1 in each antagonist epoch). Thus, RADAR
scales similarly to other CTDE approaches in expectation
with some overhead due to training additional antagonists.

lead to trivial solutions, since Q̂ = 0 according to zero-sum games.

Testing Performance and Resilience in MAS
Most tests are conducted after training, where antagonists
are trained on the final version of f̂pro to determine flaws
(Littman 1994; Li et al. 2019; Gleave et al. 2019). We pro-
pose an online test method, where we enable consistent tests
during training. For that, we use predefined test cases that
integrate novel agents which ideally have not been encoun-
tered during training before2. Such novel agents could be
new cooperative agents (e.g., when the MAS is tested for
compatibility with unknown agents) or antagonists which
represent failures (e.g., due to flaws or malicious attacks).
A MAS should behave resiliently in both cases.

We regard a test suite T consisting of test cases c =

〈f̂ ′, R′ant〉 ∈ T . For a given f̂pro, we run a single test case
by generating random mixed games similar to RAT (Algo-
rithm 1) with antagonist-ratio R′ant and f̂ant = f̂ ′ to evaluate
the average performance with gc (e.g., the protagonist return
Gt,pro or some domain-specific value). T can contain the fol-
lowing disjoint subsets as schematically shown in Fig. 2:

• 〈f̂pro, 0〉 ∈ Tideal only involves protagonists f̂i,pro encoun-
tered during training. The majority of work on coopera-
tive MAS only reports such idealized test cases to eval-
uate sample efficiency and raw performance (Lowe et al.
2017; Foerster et al. 2018; Gupta, Egorov, and Kochen-
derfer 2017; Rashid et al. 2018; Son et al. 2019).

• 〈f̂ ′pro, R
′
ant〉 ∈ Tcooperation integrates new protagonists

f̂ ′i,pro 6= f̂i,pro that were obtained from a different training
process. Tcooperation evaluates the ability of f̂pro to collabo-
rate with unknown agents. In this paper, we set R′ant = 1

2 .

• 〈f̂ ′ant, χ〉 ∈ Tfailure,χ integrates new antagonists f̂ ′i,ant 6=
f̂i,ant that were obtained from a different training process.
Tfailure,χ evaluates the resilience of f̂pro against unknown
failure scenarios according to different R′ant = χ.

Tcooperation and Tfailure,χ enable us to compare different
MARL approaches with each other in a fair way because
they face the same test agents in T . Furthermore, using a
single test suite T is practically more efficient than sepa-
rately performing an adversarial test on each MARL result
as previously proposed in (Littman 1994; Li et al. 2019).

Naively aggregating the performance values gc of each
c ∈ T could lead to the domination of test cases with
small R′ant, since more protagonists contribute to the suc-
cess of the MAS. Thus, a normalized value gc ∈ R is re-
quired to scale gc according to the number of protagonists
|Dpro| = b(1−R′ant)Nc to ensure a meaningful evaluation
w.r.t. different R′ant (Jordan et al. 2020). In this paper, we
focus on the following measures3 as depicted in Fig. 2:

• Cooperation performance estimates Ec∈Tcooperation [gc]
w.r.t. to the number of protagonists (the integrated test

2These agents can be trained with any (adversarial) MARL al-
gorithm (e.g., RADAR, M3DDPG, ARTS) independently of f̂pro.

3Although none of these measures is actually new (Crandall and
Goodrich 2005; Powers, Shoham, and Vu 2007), they are widely
neglected in current deep MARL in favor of the idealized case.

Figure 2: The introduced test sets: Tideal involves the same
protagonists encountered during training. Tcooperation and
Tfailure,χ integrate protagonists or antagonists of different
training processes than the MAS to be tested. While prior
work mainly focused on ideal performance (green), we re-
gard cooperation (blue) and worst case (red) performance.

agents do not contribute to gc) to evaluate the compati-
bility with N

2 new cooperatively trained test agents.

• Worst case performance estimates the (degraded) pro-
tagonist performance minc∈Tcooperation∪(

⋃
χ Tfailure,χ){gc} in

the worst case w.r.t. arbitrary agent changes.

The average performance of all c ∈ Tcooperation ∪
(
⋃
χ Tfailure,χ) as shown in Fig. 2 could put more emphasis

on test cases, where f̂pro performs especially well, reducing
the significance of our evaluation (Jordan et al. 2020). Thus,
we focus on the performance, which we can at least expect
from f̂pro given arbitrary agent changes (Badia et al. 2020).

Experiments4

Evaluation Domains
We implemented a predator-prey (PP) and a cyber-physical
production system (CPPS) domain with N agents. An
episode is reset after 50 time steps for each domain. We de-
fine a normalized performance value gc for each domain as
quality measure for f̂pro.

PP[K,N] consists of aK×K grid withN learning preda-
tor agents and N

2 randomly moving prey agents. Each agent
starts at a random position, is able to move north, south,
west, east, or do nothing, and has a 5 × 5 field of view. A
prey is captured with a global reward of +1, when at least
one predator i occupies the same position as main capturer
with another predator j 6= i being within sight of i, which is
recorded as κ = 〈i, j〉. Captured preys respawn at random
positions. We define gc = 1

|Dpro|
∑
κ=〈i,j〉 1[i ∈ Dpro] as the

normalized number of protagonist main captures.
CPPS[N] consists of a machine grid as shown in Fig. 3.

Each agent has a list of four random tasks tasksi organized
in two buckets. All agents start at a blue entry and are able to
enqueue at their current machine, move north, south, west,
east, or do nothing. At every time step, each machine pro-
cesses one agent in its queue. If a task in its current bucket

4Code available at https://github.com/thomyphan/resilient-marl

Figure 3: Two CPPS instances withRant = 1
4 . The white and

red cylinders represent protagonists and antagonists respec-
tively. (a, b) CPPS[4] as 4-agent setting with 1 antagonist.
(c) CPPS[16] as 16-agent setting with 4 antagonists.

matches with the machine type, the task is removed from
the agent’s task list with a reward of +1. An agent i is com-
plete, if tasksi = ∅ and it reaches an orange exit, yield-
ing another reward of +1. For each incomplete agent, a re-
ward of -0.01 is given at every time step. Each agent has
a 5 × 5 field of view without knowing the tasks of other
agents. All agents are only allowed to move along the black
paths, which represent bidirectional conveyor belts and may
only share the same position at the transparent boxes, which
represent hubs. Thus, all agents have to coordinate to avoid
conflicts or collisions to ensure fast completion. We define
gc =

|{i∈Dpro|tasksi=∅}|
|Dpro| as the protagonist completion rate.

Learning Algorithms and Test Cases
We implemented an actor-critic algorithm withAπi (st, at) =
Gt,i − V πi (st) and M3DDPG. The critic V πi = Eπi [Qπi] is
approximated via IAC, COMA, QMIX, or RADAR.

To study the effect of variable antagonist-ratios and adver-
sarial value decomposition, we implemented ablations with
fixed Rant = χ ∈ {0, 12 ,

N−1
N } denoted by RADAR (χ) and

a RAT instantiation with Ψ = IAC. Rant = N−1
N represents

the extreme case with a single protagonist agent.
Prior to training, we generated Tcooperation with RADAR

(0) and Tfailure,χ with RADAR (χ ∈ { 14 ,
1
2 ,

3
4}). For each test

set, we trained 10 test cases which are used to consistently
evaluate resilience of all implemented MARL approaches.

Neural Network Architectures
We used deep neural networks to implement f̂i = 〈π̂i, Q̂i〉
for each agent i. The neural networks are updated every 1000

Figure 4: Protagonist completion rates for RADAR and its
ablations on CPPS[4] and CPPS[16] for test cases with
R′ant ∈ {0, 12}. Shaded areas show the 95 % confidence in-
terval. The legend at the top applies across all plots.

time steps using ADAM with a learning rate of 0.001. We set
γ = 0.95, T = 4000, and Ne = 10 (Algorithm 1).

Since PP and CPPS are gridworlds, states and observa-
tions are encoded as multi-channel image as proposed in
(Gupta, Egorov, and Kochenderfer 2017; Phan et al. 2018).
We implemented all neural networks as multilayer percep-
tron (MLP) and flattened the multi-channel images before
feeding them into the networks. π̂i and Q̂i have two hid-
den layers of 64 units with ELU activation. The output of π̂i
has |Ai| units with softmax activation (gumbel softmax for
M3DDPG (Lowe et al. 2017)). The output of Q̂i has |Ai|
linear units. The centralized Q̂-networks of COMA, QMIX,
and M3DDPG are MLPs having two hidden layers of 128
units with ELU activation and one linear output unit (|Ai|
output units for COMA (Foerster et al. 2018)).

Results
For each MARL approach, we performed 20 training runs
of 40,000 episodes (2 million time steps in total). After each
epoch of Ne = 10 episodes, a full test was performed on
f̂pro by running each c ∈ T for 50 times. For CPPS[4], we
provide the expected optimal value based on antagonists that
prevent other agents from entering the CPPS by blocking the
entry path as shown in Fig. 3a and 3b.

The test performance forR′ant ∈ {0, 12} of RADAR and its
ablations is shown in Fig. 4. In CPPS[4], all RADAR vari-
ants except RADAR (N−1N) outperform RAT. In CPPS[16],
RAT outperforms RADAR (0), when R′ant > 0. RADAR
is competitive or superior to RADAR (12) and outperforms
RADAR (0), when R′ant > 0 or when N = 16. RADAR
(N−1N) improves fastest in all settings but its performance
gradually decreases after reaching a peak.

The cooperation performance of RADAR, IAC, COMA,
AC-QMIX, and M3DDPG is shown in Fig. 5. COMA, AC-

Figure 5: Cooperation performance for RADAR and state-
of-the-art MARL. Shaded areas show the 95 % confidence
interval. The legend at the top applies across all plots.

QMIX, and IAC achieve the best cooperation performance
except in CPPS[16], where RADAR performs best. How-
ever, RADAR is only slightly outperformed by the coopera-
tive MARL approaches in PP[7,4], PP[10,8], and CPPS[4].
M3DDPG performs worst in all settings.

The worst case performance of RADAR, IAC, COMA,
AC-QMIX, and M3DDPG is shown in Fig. 6. RADAR
clearly achieves the best worst case performance in all set-
tings except in PP[7,4], where COMA, AC-QMIX, and IAC
are competitive. M3DDPG performs worst in all settings.

Discussion
We presented RADAR, an adversarial value decomposition
scheme for resilient MAS. RADAR trains competing teams
of protagonist and antagonist agents of varying size to im-
prove resilience against arbitrary agent changes.

According to our ablation study, the value decomposi-
tion scheme offers a significant advantage over independent
learning: RADAR and most fixed antagonist-ratio variants
clearly outperform RAT (Ψ = IAC), because RAT (Ψ =
IAC) lacks a credit assignment mechanism, which is impor-
tant to learn coordinated protagonist and antagonist policies.

Fig. 4 indicates that training with fixed antagonist-ratios
strongly depends on the concrete setting and must be tuned,
e.g., in CPPS[4], RADAR (0) outperforms RADAR (12) on
average but in CPPS[16], RADAR (12) is clearly superior
(although the nature of tasks is the same in both CPPS in-
stances). RADAR does not require such tuning and performs
at least second best in all CPPS instances.

RADAR is able to achieve competitive cooperation per-
formance compared to state-of-the-art MARL like COMA,
AC-QMIX, and IAC. We assume that the additional train-
ing of randomly integrated antagonists causes some over-
head, which sacrifices a little performance regarding the
special case of cooperative test agents. However, RADAR
is able to achieve superior worst case performance w.r.t.
arbitrary agent changes including failure scenarios. Fig. 6

Figure 6: Worst case performance for RADAR and state-
of-the-art MARL. Shaded areas show the 95 % confidence
interval. The legend at the top applies across all plots.

indicates that RADAR is more resilient than cooperative
state-of-the-art MARL w.r.t. the size of the MAS, since
RADAR achieves significantly better worst case perfor-
mance in PP[10,8] and CPPS[16] compared to PP[7,4] and
CPPS[4] respectively. In contrast to RADAR, cooperative
state-of-the-art MARL approaches achieve especially poor
worst case performance in CPPS[16] compared to CPPS[4],
which contradicts our intuition that a MAS should be actu-
ally more resilient when more agents are available (Tanen-
baum and Van Steen 2007).

Although RADAR (N−1N) and M3DDPG focus on ex-
treme cases, they perform poorly in all settings, indicating
that if a domain is too difficult (or not solvable at all) for
a single protagonist, such specializations are not sufficient
for learning resilient behavior. Despite of RADAR (N−1N)
improving fastest in the beginning (Fig. 4), the antagonists
eventually learn to stall the single protagonist in the CPPS,
thus leading to the performance decrease. M3DDPG models
adversarial behavior within its Q̂ objective, leading to very
sparse training signal right at the beginning of training.

Significant advantages of RADAR are its algorithmic sim-
plicity and its flexibility w.r.t. to team sizes. Since it uses
uniform sampling and linear value decomposition, it does
not introduce any new hyperparameters to be tuned (the in-
tegrated antagonists have exactly the same hyperparameters
as the protagonists), thus being less sensitive than state-of-
the-art MARL, when facing a variety of adversarial settings.
Like other CTDE approaches, RADAR scales linearly in ex-
pectation and worst case, thus offering a feasible and easy
extension to existing RL approaches w.r.t. resilience.

For future work, we want to extend RADAR to non-linear
value decomposition like QMIX and use adaptive sampling
mechanisms for Rant to further improve performance and
resilience. We also aim to provide adequate agent test sets
for other established domains similarly to our experiments,
which we regard as an important step towards consistent and
fair evaluation of future cooperative MARL approaches.

Acknowledgments
We would like to thank Cornel Klein, Horst Sauer, Reiner
Schmid, and Jan Wieghardt from Siemens AG for helpful
discussions on this project.

References
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the Atari Human Benchmark. In III, H. D.;
and Singh, A., eds., Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, 507–517. PMLR.

Buşoniu, L.; Babuška, R.; and De Schutter, B. 2010. Multi-
Agent Reinforcement Learning: An Overview. In Innova-
tions in Multi-Agent Systems and Applications-1, 183–221.
Springer.

Crandall, J. W.; and Goodrich, M. A. 2005. Learn-
ing to Compete, Compromise, and Cooperate in Repeated
General-Sum Games. In Proceedings of the 22nd Interna-
tional Conference on Machine Learning, 161–168.

Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual Multi-Agent Policy Gra-
dients. Proceedings of the AAAI Conference on Artificial
Intelligence 32(1).

Gabor, T.; Sedlmeier, A.; Kiermeier, M.; Phan, T.; Hen-
rich, M.; Pichlmair, M.; Kempter, B.; Klein, C.; Sauer, H.;
Schmid, R.; and Wieghardt, J. 2019. Scenario Co-evolution
for Reinforcement Learning on a Grid World Smart Factory
Domain. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, 898–906. Associa-
tion for Computing Machinery.

Gleave, A.; Dennis, M.; Kant, N.; Wild, C.; Levine, S.;
and Russell, S. 2019. Adversarial Policies: Attacking Deep
Reinforcement Learning. In International Conference on
Learning Representations.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N.; and Weinberger,
K. Q., eds., Advances in Neural Information Processing Sys-
tems, volume 27, 2672–2680. Curran Associates, Inc.

Gupta, J. K.; Egorov, M.; and Kochenderfer, M. 2017. Co-
operative Multi-Agent Control using Deep Reinforcement
Learning. In Autonomous Agents and Multiagent Systems,
66–83. Springer.

Jordan, S.; Chandak, Y.; Cohen, D.; Zhang, M.; and Thomas,
P. 2020. Evaluating the Performance of Reinforcement
Learning Algorithms. In III, H. D.; and Singh, A., eds., Pro-
ceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning
Research, 4962–4973. PMLR.

Laurent, G. J.; Matignon, L.; Fort-Piat, L.; et al. 2011. The
world of independent learners is not Markovian. Interna-
tional Journal of Knowledge-based and Intelligent Engi-
neering Systems 15(1): 55–64.

Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-Agent Reinforcement Learning in
Sequential Social Dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’17, 464–473. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Li, S.; Wu, Y.; Cui, X.; Dong, H.; Fang, F.; and Russell,
S. 2019. Robust Multi-Agent Reinforcement Learning via
Minimax Deep Deterministic Policy Gradient. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 4213–4220.

Littman, M. L. 1994. Markov Games as a Framework for
Multi-Agent Reinforcement Learning. In Machine Learning
Proceedings 1994, 157–163. Elsevier.

Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, I. 2017. Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments. In Advances in
Neural Information Processing Systems, 6379–6390.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-Level Control
through Deep Reinforcement Learning. Nature 518(7540):
529–533.

Morimoto, J.; and Doya, K. 2001. Robust Reinforcement
Learning. In Advances in Neural Information Processing
Systems, 1061–1067.

Panait, L.; and Luke, S. 2005. Cooperative Multi-Agent
Learning: The State of the Art. Autonomous Agents and
Multiagent Systems 11(3): 387–434.

Phan, T.; Belzner, L.; Gabor, T.; and Schmid, K. 2018.
Leveraging Statistical Multi-Agent Online Planning with
Emergent Value Function Approximation. In Proceedings
of the 17th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’18, 730–738. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Phan, T.; Gabor, T.; Sedlmeier, A.; Ritz, F.; Kempter, B.;
Klein, C.; Sauer, H.; Schmid, R.; Wieghardt, J.; Zeller, M.;
et al. 2020. Learning and Testing Resilience in Coopera-
tive Multi-Agent Systems. In Proceedings of the 19th In-
ternational Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’20, 1055–1063. International Foun-
dation for Autonomous Agents and Multiagent Systems.

Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust Adversarial Reinforcement Learning. In Precup, D.;
and Teh, Y. W., eds., Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, 2817–2826. PMLR.

Powers, R.; Shoham, Y.; and Vu, T. 2007. A General Crite-
rion and an Algorithmic Framework for Learning in Multi-
Agent Systems. Machine Learning 67(1-2): 45–76.

Rajeswaran, A.; Ghotra, S.; Ravindran, B.; and Levine, S.
2017. EPOpt: Learning Robust Neural Network Policies
using Model Ensembles. In International Conference on
Learning Representations.

Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2018. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforcement
Learning. In Dy, J.; and Krause, A., eds., Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
4295–4304. PMLR.

Samuel, A. L. 1959. Some Studies in Machine Learning
using the Game of Checkers. IBM Journal of research and
development 3(3): 210–229.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
Nature 529(7587): 484–489.

Son, K.; Kim, D.; Kang, W. J.; Hostallero, D. E.; and Yi,
Y. 2019. QTRAN: Learning to Factorize with Transforma-
tion for Cooperative Multi-Agent Reinforcement Learning.
In Chaudhuri, K.; and Salakhutdinov, R., eds., Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
5887–5896. PMLR.

Stone, P.; and Veloso, M. 2000. Multiagent Systems: A
Survey from a Machine Learning Perspective. Autonomous
Robots 8(3): 345–383.

Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zam-
baldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo,
J. Z.; Tuyls, K.; et al. 2018. Value-Decomposition Networks
for Cooperative Multi-Agent Learning based on Team Re-
ward. In Proceedings of the 17th International Conference
on Autonomous Agents and Multiagent Systems (Extended
Abstract), AAMAS ’18, 2085–2087. International Founda-
tion for Autonomous Agents and Multiagent Systems.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation. In Solla, S.; Leen, T.; and
Müller, K., eds., Advances in Neural Information Processing
Systems, volume 12, 1057–1063. MIT Press.

Tan, M. 1993. Multi-Agent Reinforcement Learning: In-
dependent versus Cooperative Agents. In Proceedings of
the Tenth International Conference on International Con-
ference on Machine Learning, 330–337. Morgan Kaufmann
Publishers Inc.

Tanenbaum, A. S.; and Van Steen, M. 2007. Distributed
Systems: Principles and Paradigms. Prentice-Hall.

Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. Communications of the ACM 38(3): 58–69.

Uesato, J.; Kumar, A.; Szepesvari, C.; Erez, T.; Ruderman,
A.; Anderson, K.; Heess, N.; Kohli, P.; et al. 2019. Rigor-
ous Agent Evaluation: An Adversarial Approach to Uncover
Catastrophic Failures. International Conference on Learn-
ing Representations .

Wang, R.; Lehman, J.; Clune, J.; and Stanley, K. O.
2019. POET: Open-Ended Coevolution of Environments

and their Optimized Solutions. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, GECCO
’19, 142–151. Association for Computing Machinery.
Watkins, C. J.; and Dayan, P. 1992. Q-Learning. Machine
Learning 8(3-4): 279–292.

