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Abstract: In cooperative game theory bargaining games refer to situations where players can agree to any one of a variety
of outcomes but there is a conflict on which specific outcome to choose. However, the players cannot impose
a specific outcome on others and if no agreement is reached all players receive a predetermined status quo
outcome. Bargaining games have been studied from a variety of fields, including game theory, economics,
psychology and simulation based methods like genetic algorithms. In this work we extend the analysis by
means of deep multi-agent reinforcement learning (MARL). To study the dynamics of bargaining with rein-
forcement learning we propose two different bargaining environments which display the following situations:
in the first domain two agents have to agree on the division of an asset, e.g., the division of a fixed amount
of money between each other. The second domain models a seller-buyer scenario in which agents must agree
on a price for a product. We empirically demonstrate that the bargaining result under MARL is influenced by
agents’ risk-aversion as well as information asymmetry between agents.

1 INTRODUCTION

Bargaining has been stated one of the most fundamen-
tal economic activities and describes situations where
a group of individuals faces a set of possible outcomes
with the chance to agree on an outcome for everyone’s
benefit (Nash Jr, 1950; Roth, 2012). If the group fails
to reach an agreement the participants get their prede-
fined status quo outcomes. A bargaining game for two
players is displayed in Figure 1 where the gray area
represents the set of feasible outcomes. In this case
player 1 wants the actual agreement point to be as far
to the right as possible whereas player 2 desires it as
high as possible. The actual outcome is the subject of
the negotiation between the participants. Importantly,
each participant has the ability to veto any agreement
besides the status quo outcome.

In the game-theoretic context the analysis of bar-
gaining is commonly based on the assumption of per-
fectly rational agents. In this line, in (Nash Jr, 1950)
an axiomatic model is considered that allows to de-
rive a unique solution for the problem of dividing a
common good between two bargainers. Approaches
from the fields of evolutionary game theory (Fatima
et al., 2005), genetic algorithms (Fatima et al., 2003)
and neural networks (Papaioannou et al., 2008) drop
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Figure 1: A bargaining game between two players

the assumption of perfect rationality by introducing
boundedly rational agents and analyze the evolution
of stable strategies.

In this work the approach of boundedly ratio-
nal agents is extended by studying bargaining as a
multi-agent reinforcement learning (MARL) prob-
lem. Specifically, we use MARL to analyze the bar-
gaining outcomes found by two independent bargain-



ers. For this purpose we propose two bargaining en-
vironments resembling scenarios that are commonly
encountered in the bargaining literature. The first do-
main, called divide-the-grid, considers the situation
of two bargainers trying to divide a common good
that is available in a fixed quantity, e.g., the divi-
sion of a fixed amount of money. Secondly, we con-
sider a seller-buyer environment which models a ne-
gotiation process between a single seller and a single
buyer which is also referred as a bilateral monopoly.
Though both domains confront the learners with the
challenge of finding an agreement, there are differ-
ences in the environments with respect to the symme-
try of the task, the available information, the payoffs
and the representation of the bargaining process. In
this way, the environments while sharing the same in-
terface can be used to highlight different aspects of
MARL bargaining. On the basis of the proposed do-
mains we conduct two experiments to analyze criti-
cal aspects of the MARL bargaining process. Specif-
ically, in this work we make the following contribu-
tions:

• We formulate bilateral bargaining as a multi-agent
reinforcement learning task by proposing two bar-
gaining domains with a common MARL interface
applicable with state of the art RL methods.

• To analyze the influence of risk-aversion on the
bargaining outcome we build risk-averse agents
on the basis of the Categorical DQN (Bellemare
et al., 2017) architecture. For risk-averse deci-
sion making we use different percentiles from the
value distribution instead of the expected value
which is normally used for value based meth-
ods. We further empirically demonstrate that an
agent’s risk-aversion negatively affects its bar-
gaining share.

• The second aspect of the analysis is the influence
of information asymmetry. Information asymme-
try comes in the shape of uncertainty about the
quality of a product for which the agents are bar-
gaining a price. In this experiment agent 1 (seller)
receives more information on the product quality
than agent 2 (buyer). Here it is shown that the
bargaining success negatively correlates with the
amount of uncertainty.

Both experimental results, though consistent with
theoretic results, have to the best of our knowledge
not been shown earlier in the case of MARL.

2 BACKGROUND

Nash bargaining describes situations where individu-
als can collaborate but have to decide in which way
to actual collaborate with each other (Nash Jr, 1950).
More formally, a bargaining situation is characterized
by a set of bargainers N, an agreement set A, a dis-
agreement set D and for each bargainer i ∈ N a utility
function ui : A∪D→ R that is unique up to a posi-
tive affine transformation. The set of possible agree-
ments, the disagreement set and the utility functions
are sufficient to construct the set S of all utility pairs
which are possible outcomes from the bargaining, i.e.,
S = {(u1(a), ..,un(a))}, and the unique point of dis-
agreement d = {u1(d), ...,un(d)}. The pair (S,d) is a
bargaining problem and builds the model for the ax-
iomatic solution (Nash Jr, 1950).The set of all bar-
gaining problems is denoted B. A bargaining solution
is a function f : B→ R2 that assigns to each bargain-
ing problem (S,d) ∈ B a unique element of S. Nash
stated four axioms which should hold for a bargaining
solution (Nash Jr, 1950):

1. Pareto-Efficiency: The players will never agree on
an outcome if there is another outcome available
in which both players are better off.

2. Invariance to equivalent utility representations:
The bargaining outcome is invariant if the utility
function and the status quo point are scaled by a
linear transformation.

3. Symmetry: It is assumed that all bargainers
have the same bargaining ability, i.e., asymme-
tries between the players should be modeled in
(S,d). Therefore, a symmetric bargaining situa-
tion should result in equal outcomes for all play-
ers.

4. Independence of irrelevant alternatives: If a bar-
gaining solution found for a bargaining situation
can be assigned to a smaller subset then the so-
lution will be the same if the new feasible set is
reduced to this subset.

It has been shown that under these axioms there is a
unique bargaining solution f : B→ R, given by:

f (S,d) = argmax
(d1,d2)≤(s1,s2∈S)

(s1−d1)× (s2−d2)

Multi-Agent Reinforcement Learning Reinforce-
ment learning (RL) describes methods where an agent
learns strategies, also called policies, through trial-
and-error interaction with an unknown environment
(Sutton and Barto, 2018). Although RL assumes a
single agent it has been used in the multi-agent case



(Littman, 1994; Tan, 1993) which is known as multi-
agent reinforcement learning (MARL). In MARL dif-
ferent challenges arise: the exponential growth of
the discrete state-action space, the nonstationarity of
the learning problem and an exacerbated exploration-
exploitation trade-off (Buşoniu et al., 2010). In spite
of these challenges MARL has been successfully
used in a variety of applications and more recently
also been extended to methods featuring deep neural
networks as function approximators (Nguyen et al.,
2018).

In the presence of multiple decision makers the
learning problem can be formally described as a
Markov game M which is a tuple (D,S ,A ,P ,R )
consisting of a set of agents D = {1, ...,N }, a set of
states S , the set of joint actions A = A1× ...×AN ,
a transition function P (st+1|st ,at) and a reward func-
tion R (st ,at) ∈ RN (Boutilier, 1996).

So called independent learning refers to methods
where agents have no knowledge of other learners.
In this case, the goal of an agent is to find a policy
π : S ×A → [0,1], that maximizes the expected, dis-
counted return: Gt =∑

∞
k=0 γkrt+k+1 for a discount fac-

tor 0≥ γ≥ 1. One way to find an optimal policy is to
learn the action value function Qi : S ×A → R and
use this function as a policy by selecting actions ac-
cording to a strategy that balances exploration and ex-
ploitation during the learning process, e.g., ε-greedy
action selection:

π(s) =

{
argmax

a∈A
Q(s,a) with probability 1− ε

U(A) with probability ε

where U(A) denotes a random sample from A . At
each step an agent i updates its policy with a stored
batch of transitions {(s,a,ri,s′)t : t = 1, ...T} and for
a given learning rate α by applying the following up-
date rule:

Qi(s,a)←Qi(s,a)+α[ri+γ max
a′∈Ai

Qi(s′,a′)−Qi(s,a)]

For deep multi-agent reinforcement learning, each
agent i can be represented as a deep Q-Network
(DQN) that approximates the optimal action value
function.

Risk-Averse Learning The criterion which is com-
monly used in RL methods for decision making is
the expected return, i.e., a policy is optimal if it has
the maximum expected return. Risk-sensitive RL de-
scribes methods where other criteria are used that also
have a notion of risk (Garcıa and Fernández, 2015).

For the purpose of building risk-averse agents
we use the Categorical DQN model as suggested in
(Bellemare et al., 2017) which is build on the DQN

architecture but outputs the whole value distribution
pi(s,a) as a discrete probability distribution. In con-
trast to ε-greedy action selection over the expected
action-values we use a policy that selects actions ac-
cording to their empirical Conditional Value at Risk
(CVaR) a prominent risk-metric known from portfo-
lio optimization. The definition of CVaR is build upon
another risk metric which is Value at Risk (VaR). For-
mally, VaRα for a random variable X representing loss
and a confidence parameter 0 < α < 1, is defined as
follows (Kisiala, 2015): VaRα(X) := min{c : P(X ≤
c) ≥ α} and can be interpreted as the minimum loss
in the 1−α×100% worst cases.

One known drawback of VaR is that it does not
provide any information for the outcomes in the 1−
α×100% worst cases, which might be essential if the
potential losses are large. An extension that provides
such information is Conditional Value at Risk CVaR.
For a continuous random variable representing loss
and a given parameter 0 < α < 1, the CVaRα of X is
(Kisiala, 2015):

CVaRα(X) := E[X |X ≥ VaRα(X)]

We build risk-averse agents by making action selec-
tion on the basis of the corresponding CVaRα esti-
mated from the value distribution. Risk-sensitive de-
cision making then means to favor actions with better
CVaR for a given α. By increasing the confidence pa-
rameter α an ever smaller share of worst cases is con-
sidered making action selection more sensitive to po-
tential bad outcomes. For the process of exploration a
normal ε−greedy selection rule is used.

3 BARGAINING
ENVIRONMENTS

In this section, two bargaining environment are intro-
duced for bilateral bargaining. The bargaining scenar-
ios are represented as grids where each configuration
of the grid specifies a specific bargaining outcome. To
control the bargaining process agents move through
the grid by applying their actions a ∈ A . Through
this formulations, the bargaining process is specified
through the trajectory of actions during an episode.
The domains differ with respect to the task symmetry,
i.e., the first task is symmetric meaning both agents
receive the same observations and possible payoffs.
The second domain in contrast is asymmetric with
respect to the available observations and payoffs as
agents are either the seller or the buyer of a product.

Divide-the-Grid In this domain we consider the
problem of dividing a fixed amount of a discretely
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Figure 2: Divide-the-grid models the situation of two bar-
gainers trying to agree on the division of a common good
with a fixed quantity, e.g., a dollar. To claim their share,
bargainers can step over grid-cells thereby marking it with
their respective colors. At the end of an episode, the bar-
gaining shares are given as proportion of the occupied cells
for each agent. The bargaining process is abandoned when-
ever an agent claims a cell that has already been taken by its
opponent which gives the disagreement outcomes (d1,d2)

Figure 3: The Seller-buyer environment is a bargaining
game with asymmetric information. Agent 1 (blue, left) is
the seller of a rectangular item which occurs in two cate-
gories, i.e., low quality (dark) or high quality (bright). How-
ever, in the case of information asymmetry this information
is exclusively available to the seller. The buyer in contrast
then receives no information about the object’s quality as it
merely observes the items shape without information on the
object’s color.

divisible commodity, e.g., the the division of a dol-
lar between two agents where the resolution of the
division is restricted by the available tokens. Natu-
rally, each agent prefers a higher share to a lower. The
commodity is represented through the area of the grid
and the two players (red and blue) can claim a share
of the commodity by stepping over the cells (Figure
2). At the end of an episode the bargaining outcome
is determined by the number of cells each agent has
stepped over. Therefore, if N is the number of cells
in the grid and player i has gathered ni cells during an
episode, then the player’s share is ni

N . At each episode
the bargaining process starts anew, so agents cannot
accumulate wealth as for example in multi-stage bar-
gaining processes. The bargaining fails, i.e, results
with the status quo point if an agent steps upon cells
which have already been claimed by the other agent.
In this case, the episode ends and each agent i re-
ceives its disagreement reward di =−1∀i. Otherwise,

an episode ends after T steps.

Seller-buyer The second environment resembles a
seller-buyer scenario with a single seller and single
buyer. This situation is known in economics as a bi-
lateral monopoly. Here, the bargaining problem is to
find a price for different products. The seller’s task
is to set an ask price ps which is the lowest price the
seller is willing to accept for its product. The buyer
on the contrary has to give a bid price pb which is
the highest acceptable price to pay. The players can
set their prices by sidestepping horizontal through the
price field (see Figure 3). The status quo point is re-
alized if the ask price is higher than the bid price in
which case the selling was unsuccessful, i.e., pb < ps.
After T steps the bargaining stops and in case of
agreement the price is given as the bid price. To
model information asymmetry between the players
the product at question occurs in different qualities.
With perfect information both players would get all
information about the current product’s quality. How-
ever, under asymmetric information only the seller is
fully informed. The buyer in this case receives no in-
formation on the product quality.

4 RELATED WORK

Most of the work dealing with the study of bargain-
ing comes from the field of game theory where it is
commonly assumed that players are perfectly rational.
The equilibrium in these models can be found through
theoretical analysis of the game and the participants
will always play the dominant strategy. In evolution-
ary game theory the the perfect rationality assumption
has been discarded and replaced by allowing agents to
be boundedly rational. There is a strong link between
evolutionary game theory and multi-agent reinforce-
ment learning (Tuyls and Nowé, 2005) which is why
it is considered related work.

Evolutionary Models In evolutionary game the-
ory (EGT) the assumption of perfect rationality is
dropped. Instead, it relies on the concept of popula-
tions of different strategies being matched with each
other. This leads to an evolutionary process in which
strategies with higher relative fitness prevail. Within
the framework of EGT bargaining has been studied
in a broad range of work. In (Ellingsen, 1997) the
evolutionary stability of two classes of strategies is
examined. Agents either are obstinate, i.e., their de-
mands are independent of the opponent, or sophisti-
cated agents who adapt to their opponent’s expected
play. The results show that evolutionary stability of
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Figure 4: Shown is a snapshot of divide-the-grid (left) and the four resulting histograms representing the value distributions
for actions up, down, left, right shown in this case for the blue agent. The value distribution associated with the action left
(third histogram) shows a high probability for a return similar to the disagreement outcome (-1) which is also reflected in a
significantly lower CVaR value compared to the three other actions.

obstinate and sophisticated strategies depends on the
certainty of the pie size, i.e., when the pie size is cer-
tain evolution favors obstinate agents.

More recently (Konrad and Morath, 2016) consid-
ered the effect of incomplete information in a seller
(informed) and buyer (uninformed) scenario where
it is shown that trade becomes less likely when the
players apply evolutionary stable strategies compared
with the corresponding perfect Bayesian equilibrium.
The evolution of fairness is considered in (Rand et al.,
2013). The authors demonstrate that when agents
make mistakes when judging the payoffs and strate-
gies of others then natural selection favors fairness in
the one-shot anonymous ultimatum game.

In (Fatima et al., 2003) study the competitive co-
evolution in a setting with incomplete information.
The authors use a seller-buyer scenario and com-
pare their results with those prescribed from game-
theoretic analysis. It is shown, that stable state found
by genetic algorithms does not always match the
game-theoretic equilibrium. Moreover, the stable out-
come depends on the initial population as the players
mutually adapt to each other’s strategy.

In contrast to approaches from evolutionary game
theory in this work we do not consider the evolu-
tionary dynamics of strategies. Rather we study the
emergent outcome patterns that result from agent spe-
cific parameters such as risk-aversion or environmen-
tal modifications such as quality uncertainty. How-
ever, we do not model theses parameters as an element
of the learning process or test the stability of different
populations of strategies against each other.

Opponent Modeling Bargaining between agents is
typically a game with incomplete information as an
agent normally has no prior knowledge about its op-
ponent strategy. If provided with information about
an opponent’s preferences or wishes it would be eas-
ier for a bidding agent to make an adjusted bid thereby
allowing potentially earlier agreements. The building
of models from other agents is referred to as oppo-

nent modeling. With regard to negotiation settings the
three main aspects of modeling are: preference esti-
mation (what does the opponent want?), strategy pre-
diction (what will the opponent do?), and opponent
classification (what type of player is the opponent?)
(Baarslag et al., 2016).

Approaches to build opponent models for negotia-
tion in multi-agent settings come from different fields
including Bayesian learning (Gwak and Sim, 2010),
non-linear regression (Haberland et al., 2012), genetic
algorithms (Papaioannou et al., 2008) and artificial
neural networks (Fang et al., 2008). In contrast to
approaches from the field of opponent modeling, in
this work we do not explicitly build a model of the
opponent. Rather an agent considers other agents as
a part of the environment which renders the learn-
ing problem non-stationary from an individual agents’
perspective. In our case adaptation to opponent be-
havior results from the changing data distribution an
agent holds in its sequential memory which used to
train its policy.

Social Dilemmas Recently, deep multi-agent rein-
forcement learning has been used to study the out-
comes of distributed learning in sequential social
dilemma domains (Leibo et al., 2017; Lerer and
Peysakhovich, 2017; Wang et al., 2018). Social
dilemmas are challenging for independent learners as
each agent has incentives to make collectively unde-
sirable decisions. In contrast to social dilemmas in
bargaining an agent has no incentive to defect for
short term personal gain. Rather each agent bene-
fits from an agreement. However, there is a multitude
of possible agreements which renders the difficulty of
choosing one specific solution.

5 EXPERIMENTS

The experiments described in this section examine
the negotiation results learned by independent multi-
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Figure 5: The bargaining result is influenced by agents’
risk-aversion. Shown are the bargaining shares for agent 1
(left) and agent 2 (right) for varying levels of risk-aversion
modeled through a changing level of α for CVaRα. The
share an agent receives in the divide-the-grid setting is de-
pendent on both agent’s risk attitude. I.e., when an agent
becomes risk-averse, its share is likely to decrease.

agent deep reinforcement learning. The first experi-
ment aims at demonstrating how the bargaining out-
come depends on the bargainers risk-aversion. The
second experiment analyzes how information asym-
metry, another important feature for a bargaining pro-
cess, presses the likelihood of successful bargaining.
The simulations show that risk-aversion and informa-
tion asymmetry are vital aspects for MARL bargain-
ing.

Risk-Aversion Uncertainty arises in divide-the-grid
as the players can not reliably predict the antagonist’s
behavior. Both players are enabled to stop the bar-
gaining process yielding the less desirable disagree-
ment rewards. In the axiomatic bargaining theory the
player’s preference orderings are assumed to satisfy
the assumptions of von Neumann and Morgenstern.
In the case of two risk-averse players both utility
functions ui are concave. A central finding from ax-
iomatic bargaining theory is that whenever one player
becomes more risk-averse, then the other player’s bar-
gaining share increases (Roth, 2012).

For the purpose of modeling risk-aversion we
make use of agents to learn the distribution of the ran-
dom return as proposed in (Bellemare et al., 2017).
In contrast to the common approach of learning poli-
cies with respect to the expectation of the return, the
availability of the whole value distribution allows to
use other metrics for decision making that can be de-
rived from this distribution. More specifically, the
value distribution is modeled by a discrete distribution
parametrized by N ∈N and VMIN,VMAX ∈R. The sup-
port for this distribution is given by the set of atoms
{zi = VMIN + i4z : 0 ≤ i < N},4z := VMAX−VMIN

N−1
and the atom probabilities are given by a parametric

model θ : S ×A→RN such that the probability for zi
for state s and action a is (Bellemare et al., 2017):

pi(s,a) :=
eθi(s,a)

∑ j eθ j(s,a)

The typically learned value distribution for all ac-
tions in the divide-the-grid domain are shown in Fig-
ure 2 in this case the value distributions for the blue
agent are given. The value distributions reflect the
circumstance that choosing left in this situation will
end the episode and provide the disagreement reward
−1 for both agents. The distributions from the other
actions in contrast, are less likely to end the episode
immediately and therefore also have a higher CVaR
value, i.e., they have lower associated risk.

In the first experiment we study the effect of an
agent’s risk-aversion on the bargaining share it re-
ceives. The agent’s risk-aversion stems from a dif-
fering share of worst cases (1−α) which are taken
into account. Figures 5a and 5b show the bargaining
share for agent 1 and 2 as functions of agent 1’s risk-
aversion (y-axis) and agent 2’s risk-aversion (x-axis)
after training for 120.000 episodes. Results are the av-
erages from the last 500 episodes and. The bargaining
share for an agent increases with the the other agent’s
risk-aversion and with its own risk-neutrality.

Asymmetric Information Bargaining under asym-
metric information describes situations where single
individuals have more information than others. The
aspect of unevenly spread information has been stated
as one of the most fundamental difficulties to effi-
ciently coordinate economic activity (Hayek, 1945)
and has been extensively studied in economics (Ak-
erlof, 1978; Samuelson, 1984; Kennan and Wilson,
1993). In (Akerlof, 1978) the author demonstrated
with the market for ”lemons” how the presence of bad
quality products for sale has the potential to drive out
good quality products and potentially can lead to a
market collapse. One form of information asymmetry
arises through the existence of goods in different qual-
ity grades known as quality uncertainty. For many
bargaining situations it is realistic to assume that the
seller of the good at question has more or better infor-
mation on a trading item than the potential buyer.

In this experiment the impact of quality un-
certainty on the bargaining success of a bilateral
monopoly is examined. The seller and the buyer
are independent decision makers both represented as
DQNs. Quality uncertainty is introduced by allowing
the trading object to occur in two different categories,
i.e., in low quality and in high quality where the prob-
abilities for the categories are pl and ph respectively
(ph = 1− pl). The seller’s payoffs, denoted Ul

s,Uh
s ,



Figure 6: The success of bargaining in a bilateral monopoly
with low-quality and and high-quality items is influenced
by the probability for low-quality and high-quality to occur
and by the buyer’s relative valuation of the item.

are assumed to be strictly larger than the buyer’s pay-
offs, Ul

b,U
h
b , so that successful bargaining is always

preferable as both agents can benefit. The bargaining
is successful when at the end of an episode the buyer’s
bid price is at least as high as the seller’s ask price
yielding payoffs as given in Table 1. If unsuccessful,
the seller receives the payoff equally to its item valu-
ation, the buyer in contrast, receives a payoff of 0.

Table 1: Payoffs for the seller and buyer for items with low-
quality and high-quality.

Payoff seller Payoff buyer
low-quality 0.1 0.3
high-quality 0.4 0.6

To estimate the effect of quality uncertainty on
the bargaining success we varied the product qual-
ity probabilities pl , ph. In the limit the product will
only be available in one quality category as pl → 0 or
pl → 1. In a setting where the product can occur with
different qualities the available information for both
parties will be critical for the success of the bargain-
ing. Although, for any product category a successful
bargaining agreement would make both parties better
off the quality uncertainty increasingly rules out this
possibility. I.e., if the buying party has less informa-
tion on the current product its maximum bid price will
be derived from its valuation of the low quality prod-
uct in any case. The better informed seller however, is
not willing to sell a high quality product under these
terms and will only offer the low quality product on
his part. The effect of this information gap is likely to
also depend on the relative product valuations of both
parties. To control this effect different values for the
buyer’s high-quality valuations were tested.

Figure 6 shows the results gathered from 12 inde-
pendent runs where the bargaining success represents
the average from the last 100 episodes with a total
training time of 120.000 episodes and each episode
lasting 11 steps. The results suggest that a success-
ful bargaining becomes less likely for an even ratio
of item probabilities. This effect is more severe when
the buyer has a very low valuation, i.e., the difference
between its payoffs are little. When the buyer’s high-
quality valuation increases the success rate also in-
creases but is positively skewed towards settings with
a higher proportion of high-quality items.

6 CONCLUSION

In this work we studied MARL for bilateral bargain-
ing situations. For this purpose two bargaining envi-
ronments were proposed which resemble commonly
studied situations in bargaining literature. The first
experiment examined the influence of risk-aversion
on the bargaining share. To model risk-averse deci-
sion making within reinforcement learning we build
agents on the basis of the architecture suggested in
(Bellemare et al., 2017) that allows to learn the full
value distribution. From this distribution a commonly
used risk-metric can be derived, i.e. Conditional-
Value at Risk. To study the influence of risk on the
bargaining share, we matched agents with different
degrees of risk-aversion and find that the bargain-
ing share negatively correlates with an agents’ risk-
aversion. An interesting branch for further experi-
ments would be to match agents with different risk
metrics. Moreover, it would be interesting to ana-
lyze other possible influences on the bargaining out-
come such as stubbornness. In this work we also ruled
out the possibility of communication between agents
which would also be an interesting aspect with respect
to the bargaining behavior.

The second experiment aimed at analyzing the ef-
fect of information asymmetry on the general bar-
gaining success. Information asymmetry here comes
in the shape of quality uncertainty, i.e., a product
may belong to different quality categories. Again two
agents are involved in the bargaining process where
agent 1 is the seller and agent 2 is the buyer of an item.
The seller in this game holds information on the qual-
ity class of the current product whereas the buyer has
no such information. From varying the product prob-
abilities and the buyer’s payoffs we find that quality
uncertainty negatively affects the bargaining success.

All experimental results have to best of our knowl-
edge not been demonstrated so far for multi-agent re-
inforcement learning.
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