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Abstract

This paper applies reinforcement learning to train a preda-
tor to hunt multiple prey, which are able to reproduce, in a
2D simulation. It is shown that, using methods of curriculum
learning, long-term reward discounting and stacked observa-
tions, a reinforcement-learning-based predator can achieve an
economic strategy: Only hunt when there is still prey left
to reproduce in order to maintain the population. Hence,
purely selfish goals are sufficient to motivate a reinforcement
learning agent for long-term planning and keeping a certain
balance with its environment by not depleting its resources.
While a comparably simple reinforcement learning algorithm
achieves such behavior in the present scenario, providing a
suitable amount of past and predictive information turns out
to be crucial for the training success.

Introduction

Co-evolving ecosystems in nature often strive for an equi-
librium between the involved parties, see Rosenzweig and
MacArthur (1963). In the present paper, a predator-prey in-
teraction is considered, where for example a shark may hunt
smaller fish at roughly the rate that the fish can compensate
via reproduction. In nature, it is assumed that an equilibrium
state is approached through many generations of evolution
and none of the involved individuals follows any goal but its
own self-interest: To greedily eat as many fish as you can,
in case of the shark. However, as not extinguishing the fish
altogether is obviously a superior strategy, it should follow
from the shark’s pure self-interest to spare a few fish in order
to eat their progeny later.

While such foresight is rarely observed in nature where equi-
libria are usually approached ‘blindly’ by counteracting self-
interest, we suggest that human-made systems might be able
to approach a state of balance deliberately. For this paper,
the following question is given: Under which circumstances
can a purely self-interested predator learn individually to
spare prey for later benefit? In general, reinforcement learn-
ing (RL) should be able to find an economical strategy for
long-term benefit. In practice however, rewards in this set-
ting are sparse and initially deceptive which might be pro-
hibitive for learning such far-sighted strategies. Therefore,

518

the training requires meticulous configuration of the hori-
zon of past observations and the discount factor of future
rewards, which are discussed later. Of course, the optimal
strategy also changes with domain parameters like the prey’s
reproduction rate. It is shown that two-stage learning, i.e.
first learning the purely greedy objective and then general-
izing it to the non-greedy setting, is able to yield effective
results in the present domain.

This paper can be regarded as a first step to a guideline on
how to develop intelligent agents. Even without special tools
or goal functions, these agents actively sustain their contin-
uous reward in an open-ended domain rather than just max-
imizing reward within a short time frame, thus combining
an artificial life simulation with one of the most challenging
problems in RL, see Stout et al. (2005).

(a) Predator and swarming prey (b) Predator and turn-away prey

Figure 1: Visualization of the continuous, two dimensional
predator-prey environment. The predator agent is colored
purple, the prey agents are colored green.

Foundations
Reinforcement Learning

Similar to Kaelbling et al. (1998), the problem is formu-
lated as a Partially Observable Markov Decision Process
M= (S, A,P,R,0O,Qby), where § is a set of states, A is
the set of actions, P(s;y1|s¢, a¢) is the transition probabil-
ity, R(s¢, at) is the scalar reward, O is a set of observations,
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Q(0t41]8¢+1,a¢) is the observation probability and by is a
probability distribution over initial states sy € S. It is al-
ways assumed that s¢, s;41 € S, ar € A, and 04,0141 € O
at time step t. A history T, = [ao, 01,01,02, ..., Gt_1, ot] is
a sequence of actions and observations. As in Mnih et al.
(2015), only histories with a fixed length of h are regarded,
where old entries are successively replaced by new ones.
The goal is to find a policy n(r;) € A which max-
imizes its value function Q™ (7y,a¢) = E[> 2 7" -
R(St+k, at+k )|, at] for each history 7; and each action a;.
v € [0, 1] is the discount factor. An optimal policy 7* has a
value function Q™ = Q* with Q*(7y, a;) > Q”/(Tt, ay) for
all ¢, a, and 7’ # 7*.

7* can be approximated with reinforcement learning (RL),
where 7* is learned with experience tuples {0y, at, ¢, 0¢41),
which are obtained from agent interaction with the envi-
ronment. Q-Learning is a popular approach to RL, where
Q ~ @* is approximated with the following update rule
(Watkins and Dayan (1992)):

Qe ar) « (1 — a)Q(1e,ar) + aly — Q(1,ar)) (1)

where y = 1 + v - maxq,,, Q(Ti41,a:41) and a €
[0,1] is the learning rate. Following Mnih et al. (2015)
and Hausknecht and Stone (2015), current state-of-the-art
RL in POMDPs is implemented with deep learning using,
e.g. Deep Q-Networks (DQON).

Swarm Behavior

Flocking or swarm behavior is a widely observed phe-
nomenon in nature. Although the entities might have self-
interested goals like evading predators, they may group
themselves together, e.g. to decrease the overall flow re-
sistance or to gain more information as collaborative ob-
servation may be superior to the observation of a single
individual. A fundamental work of Reynolds (1987) on
swarm simulation formulates three basic behavior rules for
autonomously acting units (Boids) to form a swarm. Co-
hesion defines how to navigate to the centered position of
the neighboring Boids, Separation defines how to keep a
minimum distance from other Boids and Alignment defines
how to adjust the own alignment to that of the neighboring
Boids. These rules are treated as weighted forces and are
based solely on local information. Each Boid requires only
position and the movement direction of its nearest neighbors
but does not need an overview of the entire swarm. Subse-
quently, Reynolds (1999) developed algorithms to produce
natural behavior in situations where individuals escape or
pursue a target. This is achieved by combining separation as
described above and the so-called seek or flee behavior. In
essence, a continuous force is applied between a Boid’s cur-
rent and its target’s position. The mathematical sign deter-
mines whether it attracts (seek) or deflects (flee) the Boid’s
direction of movement.

Swarm behavior emerging in predator-prey scenarios in
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presence of self-interested agents has also been observed in
Multi-Agent reinforcement learning (MARL) by Morihiro
et al. (2008) who shaped rewards according to the three Boid
rules. This indicates that swarming may be an optimal prey
strategy in presence of a predator. Additionally, Hahn et al.
(2019) investigated whether MARL can achieve similar re-
sults in a continuous environment without explicitly reward-
ing a certain distance to neighbors. Regarding survival time,
the learned policies performed better than acting strictly ac-
cording to the three Boid rules. However, these policies did
not consistently beat the turn-away strategy, a flee strategy
completely ignoring swarming. Subsequently, Hahn et al.
(2020) argued that this resulted from transferring the poli-
cies into scaled up scenario. They moreover showed empir-
ically that in their scenario, staying in a swarm is a Nash
Equilibrium in terms of survival time. Also, Olson et al.
(2016) reported that the emerging prey behavior strongly de-
pends on the scenario. Therefore, the two most contrary prey
survival strategies are utilized in this paper. The prey agents
either flee from the predator while maintaining a swarm for-
mation, referred to as swarming agents, or flee individually
while ignoring cohesion and alignment, referred to as furn-
away agents, though still respecting separation to not collide
with other prey agents.

Related Work

While RL gained widespread popularity in recent years,
its application to swarms and the respective Multi-Agent
Systems has received considerably less attention, see Khan
et al. (2018). Hiittenrauch et al. (2017) proposed different
actor-critic architectures for MARL scenarios where the
actor only has access to a single agent’s local observation
while the critic has access to the entire state of the world.
Their agents had to coordinately solve complex tasks
in a two-dimensional physics environment. Technically
similar, Lowe et al. (2017) analyzed actor critic approaches
in predator-prey scenarios with predator and prey as
learning entities. Subsequently, Hiittenrauch et al. (2019)
investigated how to efficiently represent an agent’s local
observation in an environment with many homogeneous
agents in a pursuit-evasion scenario. The authors propose
to treat each agent as a sample of a distribution and use
the empirical mean embedding as input for a decentralized
policy, yielding a representation of invariant size with
respect to the number of visible agents. Yang et al. (2018)
investigated the dynamics of large predator prey populations
in a grid world trained with modified DQN. In their sce-
nario, predators could die from starvation. They observed a
wax-and-wane shape between predator populations, which
learned to hunt efficiently, consequently shrinking the
prey population on the short term. On the long term, the
predator population shrinked due to starvation, leading
to a rise the prey population again. These population
dynamics are consistent with the Lotka-Volterra model
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proposed by Lotka (1956). A different aspect of swarming
was introduced by Pinsler et al. (2018). The authors use
Inverse RL to recover the underlying reward function of bird
flocking behavior in absence of predators. This enables the
reproduction of flocking behavior through RL. Additionally,
the reward functions are used to learn a leader-follower
hierarchy. Later, Hahn et al. (2019) showed that swarm
behavior can solely emerge from self-interested agents that
try to avoid being caught by a predator. In their scenario,
the relatively small environment wrapped around at the
edges, i.e. agents leaving to the left immediately re-enter
from the right. Subsequently, Hahn et al. (2020) showed
empirically that in this scenario, swarming behavior may
form a Nash equilibrium and an individual fleeing behavior
would improve the prey populations survival. Yet, single
agents may not have an incentive to leave the swarm as
this would turn them into an easier target in free space
compared to agents remaining within the swarm formation.
While their scenario is similar to that of the present paper,
their prey agents were trained with RL and their predator
followed a static policy.

In RL, it is often important to not only concentrate on the
immediate reward but to act far sighted. This becomes more
apparent when the agent has to plan ahead for many time
steps in order to achieve its goal. Prematurely focusing on
rewards in the near future might cause the agent to get stuck
in local optima without actually reaching the desired goal at
all, see Reddy et al. (2019). Consequently, an architecture
has to be designed such that information can be retained
over a large number of time steps. Jaderberg et al. (2019)
train agents in a capture-the-flag 3D multiplayer game
to operate on two timescales. A fast Recurrent Neural
Network (RNN) models the quickly changing temporal
dynamics of the environment while a slow RNN accounts
for temporal correlations and promotes memory. This
approach allows the agent to develop long-term strategies.
Vinyals et al. (2019) use RL to master StarCraft 2, one of
the most challenging real-time strategy games. As a game
may take up to an hour, the ability of long-term planning
is essential. Actions taken at early stages of the game may
significantly influence the outcome. Moreover, their effect
is not measurable immediately and it can take a long time
until they pay off. The authors combine various neural
network architectures, e.g. Pointer Networks developed
by Vinyals et al. (2015), LSTMs developed by Hochreiter
and Schmidhuber (1997) and Transformers developed by
Vaswani et al. (2017), to enable long-term sequence model-
ing and propose a game-theoretic, population-based training
curriculum. To increase sample efficiency, Hafner et al.
(2019b), Hafner et al. (2019a) and Ha and Schmidhuber
(2018) use an RNN to explicitly learn the environment’s
dynamics. This enables the agent to “dream” and plan
ahead in its own version of the environment.

However, in the present work, the predator gains the ability
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to memorize and plan ahead through the concatenation of
an adjustable number of past states in conjunction with the
RL discount factor ~y, which weights the influence of future
rewards. In the present setting, this it sufficient to achieve
an adaptive, far sighted behavior. Therefore, more sophisti-
cated, parameter heavy and hard-to-tune architectures can
be avoided. Inspired by Vinyals et al. (2019), a multi-step
training process is employed. However, the present pipeline
is hand-crafted and considerably less complex.

In non-cooperative game theory, it is assumed that agents
act self-interested and independently. In the case of shared
resources, this often leads to the tragedy of the commons as
reported by Lloyd (1833)), where resources are exhausted
through selfish behavior instead of being shared fairly.
Moreover, non-cooperative game theory does not support
the discovery of socially positive equilibria and is hard to
adopt to complex environments. Perolat et al. (2017) study
common-pool resource appropriation problems through
the lens of MARL to observe the emergent behavior of
independent, self-interested learners. Instead of specifying
the strategy, e.g. tit-for-tat, this approach allows the agents
to learn the strategy themselves. They report the emergence
of different strategies with the parameters for the environ-
ment being changed and measure them using social metrics
such as peace, efficiency, equality and sustainability. Even
though the present paper only considers single-agent RL,
it also finds sustainable resource management emerging
through pure self-interest.

Domain
Environment

All agents are defined as unicycles, a commonly used agent
model in mobile robotics, featuring a two-dimensional posi-
tion, linear velocity (speed) and angular velocity (direction).
The agents cannot access speed and direction directly but
add the respective changes as accelerating or decelerating
forces. For example, to change direction, the agent needs
to adjust his orientation and accelerate. Per simulation step,
each agent can either reproduce or adjust its speed and ori-
entation by a certain amount. The maximum speed is deter-
mined by the ratio of the agent’s linear acceleration divided
by the respective friction constant. Technically, this results
in a simulation with double integrator dynamics. The con-
tinuous, two-dimensional state space is bounded, the limits
act as walls. Agents can collide with walls and other agents.
If one of the agents in a collision is the predator, the other
agent gets removed from the simulation. In any other case,
an elastic collision is performed with an elasticity constant
determining how much kinetic energy is preserved. In the
context of collisions, all agents have the same weight. The
most important constants are summarized in Table 1. A vi-
sualization of the environment is depicted in Fig.1.
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Environment size 30 x 30
Diameter of predator and prey 2.00
Max number of prey 10.0
Radius of prey’s perception 10.0
Max observed prey 3.00
Max acceleration of predator 0.06
Max acceleration of prey 0.04
Max orientation change of predator 3
Max orientation change of prey m
Prey reproduction after n steps 100
Friction of predator 0.10
Friction of prey 0.08
Elasticity constant 0.20

Table 1: Key domain parameters.

Actions

The non-RL agents can access the full, continuous action
space, meaning they can change their orientation by any
value between —7 and 7 and accelerate by any value be-
tween —1 and 1 as displayed in Tab. 1. However, the non-RL
agents were adjusted to always choose the maximum linear
acceleration and only control their orientation according to
the respective strategy. As DQN is only capable of choos-
ing between discrete actions, the continuous action space is
divided into six actions for the RL agent: Five actions com-
bine full linear acceleration with orientation changes of — %
%, 0, %, % and NO-OP without any acceleration as the sixth
action. Since the predator may not reproduce in the present
setting, reproduction is a unique feature of prey agents. If
a prey is not caught within a certain amount of steps and
no predator is inside its perception radius, it will spawn an
identical copy of itself right beside its current position.

Observations

While the predator agent has an unlimited observation dis-
tance, prey agents receive information about walls, predators
and other prey only within their local neighborhood. The
neighborhood is defined as a circle centered at the respec-
tive agent’s centroid with a certain radius. Predator and prey
agents can sense up to two walls, three predator agents (yet
there is only one predator in the present scenario) and three
prey agents. If more entities are visible, they are discarded.
All information is provided by an ordered vector with con-
stant length and fixed entity offsets as seen from the respec-
tive agent. For example, walls are always placed upfront in
the observation vector. If no wall is visible, zero padding
preserves the offset of following entities, e.g. other agents.
If multiple walls are perceivable, they are sorted by distance.
While walls can be described solely with positional informa-
tion (distance), other agents are additionally characterized
by their current orientation. Whether and when other agents
may reproduce is hidden. Distance and orientation are ex-
pressed via polar coordinates.
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Training
Training episodes 20000
Steps per episode 500
Replay buffer capacity 50000
Batch size 32
Steps until target net update 10000
Exploration
Function e-greedy
Decay linear, per step
Start value 1.0
End value 0.001
Neural network
Hidden dense layer 1 32
Hidden dense layer 2 16
Activation function ELU
Loss function Huber
Optimizer Adam
Max learning rate 0.0005

Table 2: Key DQN hyperparameters.

Reward

The predator agent receives a reward only for catching a prey
agent. Every other state is classified as neutral, providing
neither reward nor punishment, which ensures that no be-
havioral bias is introduced. In the present environment, the
predator catching a prey is a comparably rare event, result-
ing in a sparse reward setting. During the experiments, a
reward of +10 per catch yielded the best results in all train-
ing stages.

Experimental Setup

During prior experiments, the predator agent was observed
to only develop advanced strategies with foresighted be-
havior once the basics of navigation and hunting had been
learned. Inspired by curriculum learning, the training was
split into two consecutive stages, see Fig. 2. In addition, the
turn-away agents turned out to be more difficult to hunt, see
Fig. 3. Therefore, only turn-away agents are used during
training. In both stages, the predator agent was trained with
DQN and stacked observations. The most important hyper-
parameters are listed in Tab. 2. RL discounts future rewards
with a factor ~, which varied between 0.970 and 0.999 in the
experiments. If not stated differently in the respective figure,
v is set to 0.990.

Two-Stage Training Process

During the first training stage, the predator agent shall learn
to greedily hunt prey agents. Therefore, it is placed within
the environment besides a number of prey agents whose
movement is initially blocked, forming a dense reward set-
ting. The number of spawned prey is chosen randomly be-
tween 1 and 10 and their reproduction is disabled. After
the exploration phase, prey speed is partially increased ev-
ery 1000 episodes. Initially facing non-moving targets, the
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Figure 2: Training stages of the predator agent. During the first training stage on the left, the predator agent learns to catch
multiple non-reproducing prey agents. During the second training stage on the right, the predator learns to spare the initial prey
agent until it reproduces to be able to catch more than one prey agent afterwards.

predator has to adapt to successively faster moving prey un-
til the end of stage I.

During the second training stage, the predator agent shall
learn to utilize his greedy behavior within a balanced, eco-
nomic strategy with respect to the number of remaining prey
agents. Therefore, the number of randomly spawned prey is
capped at 3. Prey reproduction is enabled and prey speed
remains uncapped. Yet, the second stage is parameterized
such that the predator would be able to catch the initial prey
before it reproduces if he desires to do so. Especially in the
beginning of episodes, there is comparatively few prey, re-
sulting in a more sparse reward setting. To maximize the
overall reward, the optimal strategy would be to not hunt
the prey until it reaches a stable population by reproduc-
tion. The most important detail of the second stage is that
episodes do not end if all prey is caught. Effectively, this
leaves the predator without any future rewards for the rest of
this episode when being too greedy in the beginning.

Scenarios

To assess the RL agent’s performance, several hand-crafted
algorithms were implemented. The static predator uses
a purely greedy heuristic that always chases the nearest
prey agent regardless of the number of remaining prey.
The static-rand predator either chases the nearest prey or
chooses a random action, both with a probability of 50%.
The static-wait predator uses an economic heuristic that only
chases the nearest prey if there is at least one more prey
agent within the environment.

Furthermore, a base scenario was created, from which all
evaluations are derived. All evaluation scenarios use the
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same environment parameterization as the training scenario,
which is listed in Tab. 1. The base scenario proceeds the
second training stage. However, the predator agent spawns
with only one initial prey agent to hunt. The prey can move
at full speed and reproduce. This scenario evaluates whether
the predator is able to spare prey in the beginning and hunt
effectively later on.

In a first variation, the number of initial prey is increased
stepwise from 1 to 10. The episode length is expanded to
1000 steps and prey reproduction is disabled, granting the
predator enough time to catch all prey agents if he desires to
do so. This scenario evaluates the impact of different amount
of prey on the predator’s behavior.

In a second variation, the number of steps until the initial,
single prey agent reproduces is increased while the number
of steps until the predator agent catches the first prey agent
is tracked. This scenario evaluates whether a different repro-
duction time influences the predator’s behavior.

Results

Using the base scenario, Fig. 3 depicts the performance of
the strongest RL predator' against swarming and turn-away
prey. After completing the first training stage, the RL preda-
tor’s performance is on par with the static, greedy preda-
tor. After completing the second training stage, the RL
predator outperforms all static predators regardless of the
preys’ survival strategy. While forcing the static predator
to choose 50% of its actions randomly increases its perfor-

' A supplementary video of this agent hunting turn-away prey is
available online: https://youtu.be/Rrgnaz3CaxU

€20z Asenuer |0 uo 3senb Aq ypd'c/200 € [esl/yry8061/81.5/2€/020zIes!spd-sBuipeaooid/jes)/npa-jwoaip//:dny wol papeojumoq



prey survival
strategy I
swarming
B turn away
4 I
>
L
o
-
<
3 I
o]
(&)
2
== ==
0 T . . .
random static  static-rand static-wait RL stage | RL stage Il

predator algorithm

Figure 3: Average number of caught prey of different preda-
tors with swarming and non-swarming prey. This scenario
starts with a single, reproducing prey agent. Average and
0.95 CI of 300 episodes are reported.

mance against swarming prey, this neither achieves the per-
formance of the RL predator, nor yields performance gains
against turn-away prey. More specifically, Fig. 4 shows that
70% random actions are required to significantly increase
the hunting success of the static predator against turn-away
prey but come at the cost of very high variance. Using the
first variation of the base scenario, Fig. 5 compares the num-
ber of spawned prey with the number of remaining prey at
the end of an episode. Regardless of the initial number of
prey, the RL predator always spares at least one prey agent.
Using the second variation of the base scenario, Fig. 6 puts
the number of steps until the prey reproduces in relation to
the number of steps until the RL predator catches the first
prey. The time until the predator catches the first prey in-
creases with higher time until prey reproduction, indicating
a linear correlation.

Using the base scenario, Fig. 7 shows which combination of
past observations (trace length) and long term rewards (vy)
results in the strongest RL predators. With v = 0.99, a trace
length of 20 results in approximately 2.4 caught prey per
episode. Decreasing the trace length leads to a decrease of
caught prey until 1 and increasing the trace length causes
a sharp drop of caught prey towards 0. The same can be
observed at v = 0.999 with performance peaking at trace
length 1, whereas at v = 0.97 the performance peaks be-
tween 20 and 40. Further explanation is provided by the
number of prey reproductions. At a low trace length, the
prey rarely reproduces, indicating that the predator does im-
mediately catch the first prey. With high trace length, prey
reproductions peak at around 10, indicating that the preda-
tor does not catch any prey at all. Overall, the RL predator
performs best at around 4 prey reproductions.
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Figure 4: Effect of random actions on the static predator’s
average number of caught prey. This scenario starts with a
single, reproducing prey agent. Average (avg) and standard
deviation (std) of 300 episodes are reported.

Discussion

In the basic evaluation scenario, only adaptive hunting
strategies that keep a minimum distance to the prey for a
certain amount of time (until it reproduces) lead to higher
scores than 1. After the first training stage, the strongest
RL predator performs similar to a (simple) greedy predator.
After completing the second training stage, however, the RL
predator is capable of outperforming all static, greedy preda-
tor algorithms regardless of the prey’s survival strategy. The
effect of turn-away prey being more difficult to hunt than
swarming prey in a restricted environment is not surprising
and was also reported in prior work of Hahn et al. (2019,
2020). While the static-wait predator does always spare
exactly one prey agent, the RL predator reaching higher
scores indicates that RL agents are able to surpass the eco-
nomic capabilities of handcrafted heuristics. Further, the re-
sults demonstrate that adding random actions, which poses
a chance of sparing prey from time to time, does not lead to
comparable results.

Considering that the predator does not know whether prey
agents can reproduce, the experiments with a varying ini-
tial number of prey and disabled prey reproduction clearly
demonstrate that the RL predator hunts effectively but de-
liberately spares at least one prey agent, expecting the prey
population to recreate. Further considering that the predator
does not know when prey will reproduce, the experiments
with the opposite scenario of one initial prey and prey re-
production after varying time further emphasize that the RL
predator did not simply learn to wait a certain amount of
steps until starting the hunt but effectively considers the ac-
tual size of the prey population.

While the results demonstrate that a comparably simple neu-
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Figure 5: Number of prey spared by the strongest RL
predator. The scenario starts with a fixed number of non-
reproducing prey agents. Average and 0.95 CI of 300
episodes are reported.
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reproduces and the first catch of the strongest predator. The
scenario starts with a single, reproducing prey agent. Aver-
age and 0.95 CI of 300 episodes are reported.
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Figure 7: Impact of long term rewards (gamma) and past observations (trace length) on the training success (number of caught
prey) of the RL predator. Per combination, 20 predator agents were trained with reproducing, non-swarming prey agents. The
plot on the left reports the average prey catches and the 0.95 CI of the 10 strongest predator agents, the plot on the right contains

the respective prey agents’ reproductions.

ral network architecture is sufficient to achieve this behavior
when trained with methods of curriculum learning, the im-
pact of v and trace length on the RL predator’s performance
is remarkable. This indicates that for a given neural net-
work, there only is a narrow path between too little (small
trace length) and too much information (high trace length).

Conclusion
This paper applied RL to train a predator to hunt multiple
prey, which are able to reproduce, in a 2D simulation. It was
shown that, using methods of curriculum learning, long-term
reward discounting and stacked observations, an RL-based
predator could achieve a economic strategy of hunting only
if there is still prey left to reproduce in order to maintain
the population. Consequently, purely selfish goals were be
sufficient to motivate an RL agent for long-term planning

524

and keeping a certain balance in the environment by not de-
pleting its resources. Yet, the experiments also showed that
learning a long-term optimal, sustainable behavior is a com-
plex task that requires a certain amount of memory capac-
ity (past observation length, future reward discounting) and
maybe even brain plasticity (curriculum learning) to arise on
an individual level out of self-interest. This coincides with
such behavior being practically non-existent in nature. How-
ever, it is important to note that this paper neither considered
the dynamics arising in presence of multiple predators, nor
predator starvation, allowing for a line of future research.
It is suspected that fully sustainable behavior cannot always
be generated from self-interest only, but even then it is es-
pecially important to recognize which parts can and which
parts need to be given as separate goals if we want the intel-
ligent agent to manage its ecological surroundings.
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