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Abstract
We propose an approach to general subgoal-based
temporal abstraction in MCTS. Our approach ap-
proximates a set of available macro-actions locally
for each state only requiring a generative model and
a subgoal predicate. For that, we modify the ex-
pansion step of MCTS to automatically discover
and optimize macro-actions that lead to subgoals.
We empirically evaluate the effectiveness, compu-
tational efficiency and robustness of our approach
w.r.t. different parameter settings in two benchmark
domains and compare the results to standard MCTS
without temporal abstraction.

1 Introduction
Markov Decision Processes (MDPs) provide the formal foun-
dation for many current approaches to planning and deci-
sion making [Russell and Norvig, 2010; Sutton and Barto,
2018]. In that context, making decisions at multiple lev-
els of abstraction has been studied as a challenging problem
[Barto and Mahadevan, 2003; Bai et al., 2012; Vien and Tou-
ssaint, 2015]. One approach is to compress the search space
in the temporal dimension by introducing macro-actions at
a coarser resolution of time, which is motivated by human
decision making, where reasoning about the problem takes
place at different levels [Botvinick et al., 2009]. This ap-
proach, which is known as temporal abstraction or hierarchi-
cal planning [Mausam and Kolobov, 2012; Sutton and Barto,
2018], can accelerate direct reinforcement learning and plan-
ning algorithms as it decomposes the domain into a hierar-
chy of subtasks or subgoals that can be addressed individu-
ally [Dietterich, 2000; He et al., 2010; Vien and Toussaint,
2015]. Primitive action sequences to achieve such subgoals
can be combined into macro-actions to enable efficient deci-
sion making at higher levels.

Many approaches rely on extensive domain knowledge by
assuming all subgoals or macro-actions per state to be fully
known beforehand [Parr and Russell, 1998; Sutton et al.,
1999; Dietterich, 2000]. However, a complete specification
of subgoals or macro-actions is generally infeasible for do-
mains with large state spaces and many subgoals.

For many problems, it is easy to determine whether a given
state is desirable as a subgoal, but it is infeasible to specify all

possible follow-up subgoals or macro-actions for each state in
advance. Especially in online planning, subgoals and macro-
actions should be determined locally for each state, and only
when needed, to meet real-time requirements.

In this paper, we propose an approach to general subgoal-
based temporal abstraction in Monte Carlo Tree Search
(MCTS). We assume the availability of a subgoal predicate
(in addition to a generative model, i.e., an MDP), which we
integrate into the expansion step of MCTS to automatically
discover and optimize macro-actions that lead to subgoals (cf.
Section 4). Empirical evaluation shows that subgoal-based
MCTS is more efficient than standard MCTS with little loss
w.r.t effectiveness in the gridworld domain or even consider-
able gain in Tetris (cf. Section 5).

2 Background
2.1 Markov Decision Processes
An MDP is defined as a tuple F = 〈S,A,P,R, γ〉, where S
is a (finite) set of states, A is the (finite) set of primitive ac-
tions, P(st+1|st, at) is the transition probability,R(st, at) ∈
R is the reward, and γ ∈ [0, 1] is the discount factor [Puter-
man, 2014]. We always assume that st, st+1 ∈ S, at ∈ A,
and rt = R(st, at), where st+1 is reached after executing
the action at in state st at time step t. Most importantly, we
assume MDPs to be discrete and to have deterministic state
transitions, i.e., P(st+1|st, at) ∈ {0, 1} for all st+1, st, at.

The goal is to find a policy π : S → A which maximizes
the expectation of return Gt at state st for a horizon H:

Gt =

H−1∑
k=0

γkR(st+k, at+k) (1)

A policy π can be evaluated with a state value function
V π(st) = Eπ[Gt|st], i.e., the expected return at state st.
Qπ(st, at) = Eπ[Gt|st, at] is the action-value function, i.e.,
the expected return when executing action at in state st.
π is optimal iff V π(st) ≥ V π

′
(st) for all st ∈ S and all

policies π′. We denote the optimal policy by π∗ and the value
functions by V π

∗
= V ∗ and Qπ

∗
= Q∗ respectively.

2.2 Monte Carlo Online Planning
Planning searches for a (near-)optimal policy, given a model
F̂ of the actual environment F . F̂ usually provides P and



R of the underlying MDP. Global planning searches the
whole state space S to find π∗ [Bellman, 1957; Weinstein
and Littman, 2013]. An example is value iteration, which
computes the optimal value function according to the Bell-
man equation [Bellman, 1957]:

V ∗(st) = max
at∈A
{rt+γ

∑
st+1∈S

P(st+1|st, at)V ∗(st+1)} (2)

Local planning only regards the current state st and possi-
ble future states to find a policy πt [Weinstein and Littman,
2013]. We focus on local Monte Carlo planning, where
F̂ is a generative or forward model, which can be used
for simulation-based planning [Kocsis and Szepesvári, 2006;
Weinstein and Littman, 2013] without reasoning about ex-
plicit probability distributions. Given st and at, F̂ provides a
sample 〈st+1, rt〉 ∼ F̂ (st, at). We also focus on online plan-
ning, where planning is performed at every time step t with a
horizon H and a computation budget nb. The recommended
action at is executed in st, which thereby transitions to st+1.
If st+1 is no terminal state, this procedure is repeated.

Monte Carlo Tree Search (MCTS) is a popular approach
to Monte Carlo Planning and has been applied to a wide
range of challenging environments [Rubin and Watson, 2011;
Silver et al., 2017]. MCTS incrementally builds up a search
tree, which stores the visit counts N(st), Nst,at , and the val-
ues V (st) and Q(st, at) for each simulated state and action
respectively. MCTS iteratively executes the following four
steps until a computation budget nb has run out:

Selection Starting from the root node as current state s0, the
search tree is traversed by selecting nodes with a tree
policy πtree until a leaf state node st is reached.

Expansion The leaf state node st is expanded by a new node
representing the next state st+1, which is reached after
simulating a random action at in F̂ .

Simulation A rollout using a rollout policy πrollout is per-
formed from st+1 until a maximum search depth H or a
terminal state is reached.

Backup The observed rollout rewards are accumulated toGt
(Eq. 1) and used to update the value estimates and visit
counts of every node in the simulated path.

Upper Confidence bounds applied to Trees (UCT) uses
πtree(st) = argmaxat∈A UCB1(st, at) with UCB1 being de-
fined by [Auer et al., 2002; Kocsis and Szepesvári, 2006]:

UCB1(st, at) = Q(st, at) + c

√
2log(N(st))

N(st, at)
(3)

where c is an exploration constant. UCB1 balances between
exploration and exploitation of actions. Exploration is en-
couraged by the second term multiplied with c and tries out
actions to estimate action-values more accurately. The more
at is selected in st the smaller the exploration term becomes
and the more exploitation is encouraged, which greedily uses
the action with the currently highest action-value Q(st, at).
UCT has been shown to converge to the optimal best-first tree,
given infinite computation [Kocsis and Szepesvári, 2006].

3 Related Work
Temporal abstraction methods summarize temporal se-
quences of primitive actions into macro-actions by dividing
the original goal into subgoals, for which the planner can gen-
erate plans individually and independently [Kaelbling, 1993;
Barto and Mahadevan, 2003; Solway et al., 2014].

There exist different frameworks for decision making us-
ing temporal abstraction: [Sutton et al., 1999] proposed op-
tions, where each option o has an internal policy πo which
can be selected from specific states. If option o is selected,
then πo is executed until a termination condition is met. [Di-
etterich, 2000] proposed MAXQ Value Function Decomposi-
tion by defining subtasks, with each subtask mi ∈M having
a pseudo-reward function. A subtask policy has to be com-
puted for each subtask. In both cases, there is a high-level
policy π, which has to select a lower level policy according
to the corresponding option or subtask. These frameworks
assume detailed prior knowledge (e.g. internal policy, re-
ward function) about each subgoal, which is infeasible for
very large macro-action spaces and many subgoals.

[He et al., 2010] proposed Planning under Uncer-
tainty with Macro-Actions (PUMA), which generates macro-
actions from automatically discovered subgoals given a
global subgoal distribution. Each macro-action at =
〈at, at+1, ..., at+L−1〉 represents an open-loop sequence of
primitive actions. Macro-actions are determined by itera-
tively finding open-loop plans of length L, which can reach
a randomly sampled subgoal state from a given state st. The
action-value Q(st, at) is estimated via Monte Carlo simula-
tion to determine the action to be executed. Our approach is
closely related to PUMA: Each macro-action leads to a sub-
goal and is generated locally for each state during planning.
However, PUMA assumes a fixed length and a fixed num-
ber of macro-actions, which is highly domain-dependent. In-
stead, our approach only requires a subgoal predicate, which
can determine whether a given state is a subgoal or not. It
does not need a pre-defined global distribution of subgoals.

4 Subgoal-based Temporal Abstraction
4.1 Terminology
Given a deterministic and discrete MDP, we define a macro-
action mt = 〈at, ..., at+N−1〉 as an open-loop sequence of
primitive actions ai ∈ A. The macro-action spaceM = A+

is the set of all non-empty sequences overA. The macro-level
generative model F : S ×M → S determines the successor
state F (st,mt) = st+|mt| after performing mt ∈ M with
length |mt| in state st. The reward function for macro-actions
mt ∈M is defined by:

R(st,mt) =

|mt|−1∑
k=0

γkR(st+k, at+k) (4)

We define a macro-level policy π : S → M to select
macro-actions, which can be evaluated with a value function
V π(st) = R(st, π(st)) + γ|π(st)|V π(F (st, π(st)))).

We define a set of subgoals G ⊆ S with G = {st ∈
S | g(st) = 1}, where g : S → {0, 1} is a subgoal pred-
icate returning 1, if st is a subgoal, and 0 otherwise. G(st)



defines the set of subgoals directly reachable from state st
with any macro-action. M(st, gt) contains all macro-actions
that terminate in subgoal gt ∈ G when performed in state st
and M(st) represents all macro-actions which can directly
reach any subgoal gt ∈ G(st) from state st:

M(st) =
⋃

gt∈G(st)

M(st, gt) (5)

M∗(st) ⊆ M(st) is the set of macro-actions mt for state
st which locally maximize the rewardR(st,mt):

M∗(st) = { argmax
mt∈M(st,gt)

R(st,mt) | gt ∈ G(st)} (6)

By assuming γ = 1, we can show that the hierarchi-
cally optimal value function V π

∗
is preserved when replacing

M(st) with the locally optimized setM∗(st):

V π
∗
(st)

(2)

= maxmt∈M(st){rt + V π
∗
(F (st,mt))}

(5)

= maxgt∈G(st){maxmt∈M(st,gt){rt + V π
∗
(gt)}}

= maxgt∈G(st){(maxmt∈M(st,gt){rt}) + V π
∗
(gt)}

(6)

= maxmt∈M∗(st){rt + V π
∗
(F (st,mt))}

(7)

where rt = R(st,mt).

4.2 Generating Macro-Actions
We now describe an approach to approximateM∗(st) for any
given state st. M̂(st) ≈ M∗(st) is generated incremen-
tally by randomly sampling a macro-action mt fromM(st).
If mt reaches a previously undiscovered subgoal, it is added
to M̂(st). If a subgoal is rediscovered, the existing macro-
actionm′t is replaced withmt, whenR(st,mt) > R(st,m′t).

The sampling is regarded as a Bernoulli trial, where p is
the action coverage representing the fraction of already dis-
covered macro-actions of M∗(st). Let X = 〈X1, ..., Xn〉
be a Bernoulli process according to the Bernoulli distribution
B(p) with Xi ∼ B(p). Xi = 1, if the sampled macro-action
is already known, and Xi = 0 otherwise. The likelihood
L(p = p0|X) that the unknown action coverage p equals
p0 given the observations X is defined by L(p = p0|X) =(
n
k

)
pk(1 − p)n−k; k =

∑n
i Xi. If all trials were successful

(k = n), then L(p = p0|X) = pn. To test if p ≥ p0, we
define a statistical test ψ : {0, 1}n → {0, 1} with null hy-
pothesis H0 : p < p0 and alternative hypothesis H1 : p ≥ p0:

ψ(X) = I(L(p = p0|X) ≤ α) = I(n > logp0α) (8)

where α ∈ [0, 1] is the tolerated error.
If we consecutively sample n macro-actions, whose sub-

goals are already known, and n > logp0α, we will assume
that a coverage of at least p0 is achieved. Increasing the de-
sired action coverage p0 leads to a higher percentage of dis-
covered macro-actions of M∗(st) and to higher quality of
each macro-action in M̂(st) at the cost of more trials.

Algorithm 1 Expansion with Macro-Action Generation

1: procedure ExpansionWithMA(F̂ , g, t, st, H, p0, α)
2: n← 0
3: repeat . discover macro actions until confident
4: st+1 ← st
5: mt ← 〈〉
6: repeat . sample until macro state or horizon
7: at ∼ A
8: mt ← mt ++ 〈at〉
9: st+1 ← F̂ (st+1, at)

10: until (g(st+1) = 1) ∨ (t+ |mt| ≥ H)

11: if ∃m′t ∈ M̂(st) : F (st,m
′
t) = st+1 then

12: n← n+ 1 . macro state rediscovered
13: ifR(st,mt) > R(st,m′t) then
14: M̂(st)← (M̂(st) \ {m′t}) ∪ {mt}
15: else . new macro state discovered to expand
16: M̂(st)← M̂(st) ∪ {mt}
17: return mt

18: until n > logp0α
19: fullyExpanded(st)← true
20: return nil

4.3 Integration with MCTS
The approach described above can be easily integrated into
MCTS, since actions are iteratively explored for each state.
Instead of pre-computing the whole set of macro-actions, we
only need to find one new macro-action in the expansion step.
This saves computation time, since macro-actions are only
generated on demand according to the selection policy.

The complete formulation of the modified expansion step
is given in Algorithm 1, where F̂ is the generative model of
the MDP, g is the subgoal predicate, t is the current time step,
st is the current state, H is the planning horizon, p0 is the
desired action coverage, and α is the tolerated error.

Our approach constructs a search tree for deterministic
MDPs, where the root node represents the current state,
all other nodes represent subgoal states, and links represent
macro-actions. Our expansion step updates the macro-action
set M̂(st) for the current leaf node representing st. If the de-
sired action coverage p0 has been achieved, the node of st is
considered as fully expanded and returns nil. The expansion
step will not be invoked for fully expanded nodes.1

The advantage of this approach is that only subgoals di-
rectly reachable from a given state are regarded. The set
of available subgoals per state is only computed on demand,
when the state is actually visited during tree search, and is
not required to be specified beforehand. Our approach en-
ables planning with macro-actions mt of arbitrary length
(1 ≤ |mt| ≤ H − t), thus being more flexible than PUMA
[He et al., 2010]. Note that the Backup step has to be ad-
justed to consider the discount of subgoal rewardsR(st,mt)
according to the length of each macro-action mt (Eq. 4).

1For a complete description of that integration in pseudo-
code, please refer to github.com/hugo-voodo/temporal-
abstraction/blob/master/supplement.pdf.

https://github.com/hugo-voodo/temporal-abstraction/blob/master/supplement.pdf
https://github.com/hugo-voodo/temporal-abstraction/blob/master/supplement.pdf
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(a) Gridworld (b) Tetris

Figure 1: (a) Gridworld of [Bai et al., 2016] with ‘X’ representing
the agent’s initial position, ‘G’ representing the goal and ‘#’ repre-
senting obstacles. (b) The game Tetris.

4.4 Possible Variants and Enhancements
Modes. Similarly to [Bai et al., 2016], our approach can
operate in different control modes. In hierarchical control
mode, the MCTS returns the macro-action as sequence of
primitive actions, which is successively applied to the real en-
vironment. In this case, planning is only performed at subgoal
states, thus reducing the overall computation. In polling con-
trol mode, the MCTS returns only the first primitive action of
the recommended macro-action. This mode can recover from
locally poor decisions, since planning is performed at every
time step t but requires more computation in total.

Tree Reuse. In MCTS, the computed subtree of the follow-
ing state can be reused to avoid complete replanning by keep-
ing the learned statistics from the previous planning step. If
polling control mode is used, tree reuse cannot be trivially ap-
plied to our approach because the state nodes represent sub-
goal states, while planning can be performed on non-subgoal
states in polling mode. Thus, we only regard tree reuse in
combination with hierarchical control mode.

Parallelization. There exist many approaches to paral-
lelization of MCTS ranging from tree parallelization with
mutually exclusive locks to root parallelization, where mul-
tiple separate trees are generated and searched in parallel
[Chaslot et al., 2008; Browne et al., 2012]. We only focus on
root parallelization due to the minimal synchronization over-
head. We also expect root parallelization to compensate for
approximation errors caused by low action coverages, since
multiple trees will generate different macro-action sets, thus
converging to different trees. Since we focus on deterministic
problems, it is most promising to make decisions based on
the single best action found by an individual tree.

5 Experiments
5.1 Evaluation Environments
Gridworld is one of the must studied example domains in ar-
tificial intelligence [Sutton et al., 1999; Russell and Norvig,
2010; Bai et al., 2016; Sutton and Barto, 2018]. An agent has
to navigate in a two-dimensional grid to reach a goal position.
The agent is able to move north, east, south and west to ad-
jacent grid cells, but it cannot pass obstacles in the grid. A
reward of -0.01 is given at every time step. Reaching the goal
gives a reward of 1 and terminates the episode. The setup
used in this paper is shown in Fig. 1a. The grid is divided
into eight rooms with connecting ‘doors’.

The Tetris game is another popular research domain in
artificial intelligence research [Thiery and Scherrer, 2009;
Zhongjie et al., 2011; Scherrer et al., 2015; Jaskowski et al.,
2015]. An object called tetrimono has to be controlled in a
Wb×Hb board (violet ‘L’ shape in Fig. 1b), while it is falling
to the ground. At every time step, the tetrimono moves down
to the next grid cell until it touches the ground (of stacked
previous tetrimonos). The agent can rotate the tetrimono left
or right, move it left or right, or do nothing. After the tetrim-
ino has fallen down, a reward of 1−(0.5 h

2
c

H2
b
+0.5min{1, xX })

is given and a new tetrimono appears in the upper center of
the board. hc is the current height of the stack, Hb is the
board height, Wb is the board width, x is the number of holes
in the tetrimono stack, and X = Wb

4 (Hb − 2) is an arbitrary
upper bound on stack holes. The game ends with a reward of
-1, when the tetrimono stack height exceeds the board height.
The goal is to minimize the height of the stacked tetrimonos
in the long run. We always set Wb = 10 and Hb = 10.

5.2 Methods
Online Planning
We implemented different instances of our approach, which
we call Subgoal-MCTS (S-MCTS).2 The polling control mode
is used as default mode. S-MCTS-H uses hierarchical con-
trol mode and S-MCTS-H-R additionally enables tree reuse.
We also implemented UCT of [Kocsis and Szepesvári, 2006],
which we refer to as MCTS or as MCTS-R, if tree reuse is en-
abled. All MCTS implementations use UCB1 as tree policy
and random rollouts. We also implemented random rollout
planning, referred to as MC.

For each planning algorithm, we experimented with differ-
ent settings of tunable parameters.3 For all experiments, we
set γ = 1, p0 = 0.95, and α = 0.001. We implemented root
parallelization for all MCTS-based approaches using multi-
threading to generate multiple trees.

Subgoal Heuristics
For Gridworld, we use a subgoal predicate g returning 1, if
the agent position is at a ‘door’ position with obstacles on
opposing sides next to it, and 0 otherwise.

For Tetris, we use a subgoal predicate g, which returns 1, if
the current tetrimono has fallen down, and 0 otherwise. Note
that while it is easy to determine whether a given state is a
subgoal or not (e.g., by checking the y-coordinate of the cur-
rent tetrimono’s position with our subgoal predicate g), it is
infeasible to specify all possible subgoals for each tetrimono
type beforehand, since there are too many possible combina-
tions of position and rotation per tetrimono type.

5.3 Results
We ran each experiment with different parameter settings.
Each setting was run 60 times for a maximum of 1000 time
steps in Gridworld or 20000 time steps in Tetris.

2The code can be found at github.com/jnptr/subgoal-mcts.
3For all parameter configurations, see github.com/hugo-

voodo/temporal-abstraction/blob/master/supplement.pdf.

https://github.com/jnptr/subgoal-mcts
https://github.com/hugo-voodo/temporal-abstraction/blob/master/supplement.pdf
https://github.com/hugo-voodo/temporal-abstraction/blob/master/supplement.pdf
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Figure 2: Average return per computation time per step of each plan-
ning algorithm using different parameter settings. The x-axis uses a
logarithmic scale.

Performance-Computation Tradeoff
First, we evaluated the performance and computation time
of each algorithm with different parameter settings (Sec-
tion 5.2). The results are shown in Fig. 2. Each data point rep-
resents the average return for an average amount of compu-
tation time per step t given a specific parameter setting. The
color indicates the algorithm as described in Section 5.2. The
dotted horizontal line indicates the maximum possible return
for the respective domain (which overestimates for Tetris).

In Gridworld (Fig. 2a), S-MCTS, S-MCTS-H, and S-
MCTS-H-R achieve competitive performance compared to
MCTS and slightly lower performance than MCTS-R with
much less computation time. In Tetris (Fig. 2b), we omit-
ted MCTS due to intractable run times and replaced it with
MC. S-MCTS-H and S-MCTS-H-R quickly achieve near-
maximum return with S-MCTS-H-R being less sensitive to
the concrete parameter setting. S-MCTS is slower than S-
MCTS-H and S-MCTS-H-R but achieves the best overall per-
formance. MCTS-R requires much more computation time
than Subgoal-MCTS approaches, while being unable to keep
up in performance. MC slightly improves with more compu-
tation time but is clearly inferior to all other approaches.

In both domains, S-MCTS-H and S-MCTS-H-R are gener-
ally faster than S-MCTS, since computation only takes place

at subgoal states. Still, both approaches are able to achieve
competitive performance compared to S-MCTS. S-MCTS-H
and S-MCTS-H-R also seem to be less sensitive to the param-
eter settings than the other approaches.

Action Coverage and Parallelization
We also evaluated different combinations of desired action
coverages p0 and tree counts in the Tetris domain. The re-
sults are shown in Fig. 3 for S-MCTS, S-MCTS-H, and S-
MCTS-H-R. Each plot shows the average return of each al-
gorithm with the best parameter setting (Section 5.2), when
using a particular number of trees, which are generated in
parallel. The dotted horizontal line indicates the maximum
possible return. Increasing p0 generally leads to increasing
return and reduces the variance for all settings. Using a large
number of trees can compensate for low desired action cover-
ages p0, generally leading to higher returns, while requiring
less time per step. In case of S-MCTS and S-MCTS-H (Fig.
3a and 3b), all settings achieve similar performance, when
the desired action coverage is sufficiently large (p0 = 0.95).
S-MCTS-H-R (Fig. 3c) has more variance in its returns, but
requires much less time, when using many trees.

Robustness w.r.t. Subgoal Heuristics
Finally, we evaluated the robustness of our approach w.r.t.
different subgoal heuristics for the Gridworld domain with
different parameter settings (Section 5.2). The ‘exact defini-
tion’ identifies subgoals by checking, if there are obstacles
on opposing sides next to the agent, indicating a ‘door’ in
the grid. A coarser heuristic (|A(st)| ≤ Na) checks, if the
number of legal actions |A(st)| at the current state is Na at
most. If Na = 3, e.g., then positions next to walls are re-
garded as subgoals as well. The results are shown in Fig. 4
for S-MCTS, S-MCTS-H, and S-MCTS-H-R. Each data point
represents the average return for an average amount of com-
putation time per step t given a specific parameter setting.
The color indicates the used subgoal heuristic. The dotted
horizontal line indicates the maximum return for the Grid-
world domain. When using the heuristic |A(st)| ≤ 2, then
all approaches perform slightly worse than the ‘exact defini-
tion’, while being similarly robust w.r.t. the parameter set-
ting. However, when using the heuristic |A(st)| ≤ 3, then
the performance is generally worse and all approaches are
much more sensitive to the parameter setting, while requir-
ing significantly more computation time. Hierarchical control
mode and tree reuse seem to slightly improve the robustness
of Subgoal-MCTS w.r.t. the parameter setting, while not hav-
ing a general impact on the overall performance.

6 Discussion
We proposed an approach to general subgoal-based tempo-
ral abstraction in MCTS. Our approach approximates a set of
macro-actions locally for each state only requiring a genera-
tive model and a subgoal predicate.

Our experiments show that S-MCTS and its variants are
competitive against standard MCTS in terms of performance-
computation tradeoff. While all variants of S-MCTS perform
slightly worse in the Gridworld domain, they are able to out-
perform MCTS-R in Tetris, while generally requiring much
less computation time than MCTS in all domains.
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Figure 3: Average return per computation time per step (normalized
by the number of trees) of S-MCTS, S-MCTS-H, and S-MCTS-H-R
for different desired action coverages p0 and tree counts in the Tetris
domain. The x-axis uses a logarithmic scale.

Exploration in S-MCTS depends on the number of sub-
goals. This was shown in the last experiment, where all vari-
ants of S-MCTS displayed worse performance, when using
a very coarse subgoal heuristic.When using S-MCTS in hi-
erarchical control mode, computational efficiency can be sig-
nificantly increased. If a suboptimal choice has been made,
S-MCTS-H is unable to recover from the performed actions
until the next subgoal is reached, while S-MCTS in polling
control mode can locally compensate for suboptimal choices
at each time step. Enabling tree reuse slightly improves per-
formance as shown in the first experiment (Fig. 2). Since tree
reuse avoids complete replanning, S-MCTS can explore the
search space more thoroughly to find better macro-actions.
In addition, S-MCTS is shown to benefit from root paral-
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Figure 4: Average return per computation time per step of S-MCTS,
S-MCTS-H, and S-MCTS-H-R for different subgoal definitions and
parameter settings in the Gridworld domain. The x-axis uses a log-
arithmic scale.

lelization. When generating multiple search trees in paral-
lel to search for macro-actions, the performance of all S-
MCTS variants can be further improved, while requiring less
time. This encourages to exploit multiple cores in real-time
applications to make high-quality decisions at certain time
frames. When combining tree reuse with a high degree of
parallelization, the search time can be drastically reduced by
reusing the sets of discovered macro-actions from previous
planning steps, while compensating for the approximation er-
rors caused by each individual tree.

Overall, the question of how to adequately define subgoal
predicates remains. Future work may further extend flexibil-
ity on subgoal predicates, for instance allowing to respect a
history of states instead of just a single state.
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