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Abstract

In nature, flocking or swarm behavior is observed in many
species as it has beneficial properties like reducing the prob-
ability of being caught by a predator. In this paper, we pro-
pose SELFish (Swarm Emergent Learning Fish), an approach
with multiple autonomous agents which can freely move in
a continuous space with the objective to avoid being caught
by a present predator. The predator has the property that it
might get distracted by multiple possible preys in its vicinity.
We show that this property in interaction with self-interested
agents which are trained with reinforcement learning to solely
survive as long as possible leads to flocking behavior similar
to Boids, a common simulation for flocking behavior. Fur-
thermore we present interesting insights in the swarming be-
havior and in the process of agents being caught in our mod-
eled environment.

Introduction

Flocking or swarm behavior is observed in many species in
nature. A prominent example is fish schooling, where mul-
tiple fishes do not only stay close to each other for social
reasons but coordinate their actions collectively. That means
that an individual fish aligns its direction in regard to fishes
that are close to it, while maintaining a certain cohesion of
the group and still avoiding collisions with other individuals.
However, flocking behavior does not only exist as an end
in itself. In nature, a schooling fish benefits from schooling
in multiple ways: The swarm increases one’s hydrodynamic
efficiency or mating chances. Also, flocking enhances for-
aging success as collaborative observation is superior to a
single individual’s. The same is true for predator detection.
Even further, the probability of being caught decreases for
an individual with regard to certain predator behaviors.
Reynolds (1987) showed that algorithmically implement-
ing the three rules of alignment, cohesion and separation
leads to flocking behavior while an individual only needs
local knowledge about its surrounding neighbors (called
Boids). In order to overcome these static flocking rules
Morihiro et al. (2008) used reinforcement learning to train
an individual to justify the rules stated above in order to
form a swarm. This was done by shaping the reward sig-

nal according to distances between the individuals and lim-
iting their actions to be attracted to another fish, be repulsed
from another fish and move parallel in the same or opposite
direction of another fish, respectively.

With SELFish we investigate the case that an individual
tries to optimize its behavior with respect to the objective of
surviving as long as possible in the presence of a predator
(which might get distracted by multiple preys). We show
that this simple objective leads to emergent flocking behav-
ior (similar to Boids) in a multi-agent reinforcement learning
setting, without the need to explicitly enforce it.

Reinforcement Learning

Reinforcement Learning denotes a machine learning
paradigm in which an agent interacts with its environment
and receives a certain reward for its action accompanied
with an observation of the new state of the environment.
Such scenarios are usually modeled as Markov Decision
Processes (MDPs), where S denotes the set of states of the
environment, .4 denotes the set of actions an agent can take
and r (s, a;) is the intermediate reward received after action
a; was taken in state s; at time step ¢. Also, the process
moves to a new state s, influenced by the action a;, with
the Markov property being that the new probability of tran-
sitioning into state s;y; only depends on state s; and the
chosen action a;: P(s¢11]|s¢,a+). The goal is to find a pol-
icy m : § — A which maximizes the accumulated reward
R = Z?:t vi=tr(s;, a;) from time step ¢ to the simulation
horizon T with a discounting factor v € [0, 1].

In SELFish the state is partially observable, which means
that instead of using the full state description s; to determine
the action a; = 7(s;), the agent only uses an observation
ot € O (where O is the space of all possible observations)
as input to a policy function 7 : O — A to compute the
action a; = (o). Furthermore the observation may be dif-
ferent for every agent. However, we focus on a deterministic
domain, so P(s¢41]s¢,a¢) € {0,1}.



Deep Learning

In Reinforcement Learning the policy or intermediate func-
tions, which help to derive it, are usually expressed as deep
artificial neural networks. Neural networks can viewed as a
directed graph of nodes, called neurons, which are intercon-
nected by weighted edges. A neuron receives inputs over
its ingoing edges, usually computes the weighted sum of the
inputs, applies a non-linear function to this weighted sum
and forwards its output to subsequent neurons via its out-
going edges. The neurons are usually arranged in layers,
where layers between the input layer and the output layer of
the network are referred to as hidden layers. Networks with
multiple hidden layers are called deep neural networks.

Artificial neural networks serve as biologically inspired
function approximators which can be trained by example to
approximate a function f mapping an input vector € IR"
to an output vector y € IR"™ depending on the weights of the
edges 0. The goal in training a neural network is to minimize
the error between the networks’ output ¥’ = f(x; 6) and the
known desired (example) output y by adjusting the weights
0 accordingly. This can be done with the Backpropagation
method combined with a gradient descent strategy.

Deep Q-Learning (DQN)

Q-Learning is a value-based approach named after the
action-value function Q™ : S x A — IR, which describes the
expected accumulated reward Q™ (s, a;) after taking action
a; in state s; and following the policy 7 in all subsequent
states. The goal is to find an optimal action-value function
Q*, which yields the highest accumulated reward. Q* can
be approximated through Bellman’s principle based on the
intuition that for an optimal policy, independently of the ini-
tial state and initial decision, all remaining decisions must
constitute an optimal policy with regard to the state result-
ing from the first decision (Bellman (1957)). Starting from
an initial guess for @, it can be iteratively updated via

Q(st,at)  Q(s¢, a¢)+afri+ry max Q(St41,a)—Q(5¢, at)]

where the learning rate o € (0,1) is a parameter to be
specified. The learned action-value function ) converges
to Q*, from which an optimal policy can be derived via
m*(s¢) = argmax, Q(s¢, a).

In Deep Q-Learning (DQN) (Mnih et al. (2013)) an ar-
tificial neural network is used to represent the action-value
function @). Also, to minimize correlations between sam-
ples and to alleviate non-stationary distributions an experi-
ence replay mechanism is used (Mnih et al. (2013)) which
randomly samples previous state action transitions to train
the neural network.

Deep Deterministic Policy Gradient (DDPG)

To overcome the limitation of Q-Learning, which cannot di-
rectly be applied to continuous action spaces, efforts were

made to learn the policy u(s|6#) directly with a parame-
terized objective function J(6) (Silver et al. (2014); Lilli-
crap et al. (2015)). In addition it was proposed to split the
learning process in two components to reduce the gradient
variance, called actor-critic approach. The critic learns the
action-value function Q(s, a) using the Bellman equation as
in Q-learning. The actor then updates the policy parameters
0" in the direction suggested by the critic:

Voud = Eq, [VaQ(s,al09) o=, amp(s) Voru(siom))._.,

Multi-Agent Case

Many approaches have been suggested for the case that there
are multiple agents present which are either self-interested
or have to work together to achieve a cooperative goal. A
straightforward idea in the case that there are multiple agents
that act in their self-interest, which means that they only
maximize their own accumulated reward, is deploying a
standard reinforcement learning algorithm (as in the single-
agent case) in each individual agent in the multi-agent set-
ting and let all agents learn simultaneously. This straightfor-
ward approach bears the problem of non-stationarity in the
state transitions. As one agent tries to adapt its actions in
certain states, other agents, which are considered as part of
the environment for the first agent, do so as well. This makes
it difficult to learn a policy depending on the observed state,
which no longer satisfies the Markov property.

Egorov (2016) approaches a pursuit-evasion game with
reinforcement learning. There are multiple pursuers and
multiple evaders. Only one agent of each kind is trained
through Q-Learning at a time while the policies of the other
agents are fixed. After a number of iterations the policy of
the learning agent is distributed to all other agents of the
same type. Through this process the policy of one set of
agents is improved incrementally over time.

This mitigates the problem of non-stationarity. Further-
more it seems reasonable to copy the policy of one agent
throughout multiple homogenous agents as all are alike and
pursue the same self-interested goal. This observation is also
relevant for flocking or swarm behavior of multiple agents as
we will demonstrate below.

Swarm Behavior
In 1987, Craig Reynolds (Reynolds (1987)) described three
basic rules through which flocking behavior can be mod-
eled. For these rules an individual only needs local knowl-
edge about its neighbors within a certain distance. These
rules are:

e Alignment: Steer towards the average heading direction
of local flockmates

e Cohesion: Steer towards the average position (center of
mass) of local flockmates

e Separation: Steer to avoid crowding local flockmates



If each individual (called Boids by Reynolds as he thought
of bird-like creatures) follows these rules, a swarm forma-
tion emerges. In an implementation, they can be expressed
as physical forces which act upon an individual. Supple-
mentary forces can be introduced, which repel an individual
from an enemy or from obstacles, for example.

To overcome these static rules definitions, Morihiro
et al. (2008) used Reinforcement Learning, particularly Q-
Learning, to train agents to follow these rules. In their model
the agents iteratively learn while at every time step an agent
1 only considers one other agent j. Agent ¢ receives the eu-
clidean distance to j as observation and can choose among
four actions to execute. These actions are to move towards
agent j, away from agent j or parallel to agent j either in the
same or opposite direction. The reward agent ¢ receives for
an action depends on the previously mentioned distance to
agent j and is shaped in a way that it intuitively represents
the cohesion and separation rule. In this regard agent 7 re-
ceives a positive reward if it steers so to keep its distance to
7 within predefined boundaries.

While the previously mentioned approaches lead to flock-
ing behavior, they neglect the beneficial properties flocking
behavior might have for the individuals. One of those ben-
efits could be the increased likehood to survive in the pres-
ence of predators, as they might get distracted by the sheer
amount of possible targets. The question arises whether
flocking behavior occurs in a scenario with such properties
where agents solely try to maximize their survival time. In
contrast to Morihiro et al. (2008), we pursue a scenario in
which agents are trained with reinforcement learning solely
on the objective to survive, without explicitly enforcing
swarm behavior. Additionally, we demonstrate that SELFish
also works for a continuous action space of the agents.

Emergent Swarm Behavior

In order to investigate whether the objective to survive in the
presence of a predator would lead to flocking behavior in a
multi-agent setting, we created a model that facilitates such a
behavior. In the following the properties of the environment
will be explained. This is followed by a description of the
action and observation space as well as the reward structure
which was used to train the agents.

Environment

The agents, which are the prey in this scenario, can freely
move in a continuous two-dimensional space, visualized as
a square with predefined edge lengths (see Figure 1). An
agent itself is represented as a circle with a surface substan-
tially smaller than the space it is moving in. There are nei-
ther obstacles nor walls in the environment. Furthermore
agents do not collide with each other. To ease free roaming
of the agents, the space has the special characteristic that it
wraps around at the edges forming a torus. That means that
if an agents leaves the square visualization to the right, it
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Figure 1: Example of the space with 60 agents (green) and
one predator (orange).

will immediately enter it again from the left (same for the
other direction or around top and bottom).

Together with the agents there also exists a predator in the
environment. The predator is also represented as a circle.
The goal of the predator is to catch the agents by moving
to their position. As soon as the predator collides with an
agent, the execution of the concerning agent will end and
a new agent is spawned immediately at a random position
to keep the number of agents in the system constant. If
there are multiple agents within a certain distance around
the predator, it will choose one for a target at random (oth-
erwise it will move to the closest agent’s direction). This
means that the predator can be distracted by multiple agents
in its proximity. Thus it might be beneficial for an agent
to move towards other agents as the predator might get dis-
tracted, which is essential for flocking behavior. However, to
prevent the predator from constantly changing targets it will
follow a chosen target for a certain time before a new target
will be chosen. By default, the agents and the predator move
at the same speed. This would allow an agent to turn in the
opposite direction of the predator and move away without
the predator having a chance to catch up. That is why the
predator will accelerate occasionally for a short amount of
time, which simulates a leap forward to catch the prey it is
following. The policy of the predator is static and does not
change over time.

Objective of an Agent

The goal of the agents is not to collide with the predator.
For this they receive a reward of +1 for each step/frame
they live and -1000 for the collision with the predator which
ends their life. With this reward structure the objective of
the agents can be viewed as “surviving as long as possi-
ble”. As there are no obstacles in the environment and the
agents do not collide with each other, there are no other re-
wards/penalties.



Action Space

The action space of the agents only comprises of the angle
they want to turn each time step. The movement speed of the
agents is constant and cannot be altered by them for now.

The action a, which represents the turning angle that can
be chosen from discrete steps or out of a continuous interval
by the agent, depends on the reinforcement learning strategy
which is used later on. In the case that DQN is used, the
actions an agent can chose from comprise five discrete de-
gree values {—90°, —45°,0°, +45°,+90°}. The agent can
choose any real-valued degree as turning angle in the case of
DDPG.

As a side node, the predator can only take limited real-
valued turns {x € IR | —45° < x < 45°} at every step with
the goal to give the agents a higher maneuverability than the
predator.

Observation Space

In order to facilitate the scalability to many autonomous
agents, one agent cannot observe the full state of the environ-
ment; instead its observation is limited to itself, the predator
and the n nearest neighboring agents. This approach can
be explained biologically, where, for example, a fish in a
swarm cannot observe the whole swarm but only its local
neighbors. But it is also in line with related work, for ex-
ample Boids, where also only local neighborhoods between
agents are regarded. Furthermore it eases computation and
has the nice property that the observation vector, which is
forwarded through the reinforcement learning algorithm in
order to obtain an action, has a constant length (cf. the fol-
lowing section).

For every observable entity e, the agent receives a 3-tuple
which contains the euclidean distance between the entity and
the agent, the angle the agent would have to turn to face to-
wards the observed entity and the absolute orientation of the
entity in the environment: (dist., direction., orientation,).
As the environment is a torus, the distances are also cal-
culated around the edges of the visualized square, with the
shorter distance being taken (with the direction. correspond-
ing to this). The absolute orientation of an entity is measured
in degrees [0°,360°), where facing east corresponds to 0°,
measuring the angle counter-clockwise. The angle an agent
would have to turn to face towards another entity is mea-
sured in degrees in the range of (—180°, 180°].

Accordingly, an agent receives the following observation
for the predator, itself and the n nearest neighboring agents,
in which the n neighbors are ordered by their distance.

distpredaror  AITECtiONpregaror  OTIENALIONpredaror
0 0 orientationgey
distyeighbor, — directioneighpor, — OTIENIALIONeighbor,
distyeighbor, — directionpeighpor, — OTIENIAtiONeighbor,
L disrneighhorn direCtionneigllborn Orientationneighborn |

Hyperparameter DQN DDPG
Training Steps 500,000 500,000
Hidden Layer 10 5

. Actor: 16
Neurons in Layers 16 Critic: 32
Hidden Layer Activation relu relu
Last Layer Activation linear linear
¥ 0.999999 0.999999
Optimizer Adam Adam
Learning Rate 0.001 0.001
Replay Buffer Size 50,000 100,000
Batch Size 64 512
Ornstein
Exploration e-Greedy Uhlenbeck
0 =0.15,

e=0.1 u=20.0,

c=0.3
Observable neighboring agents 5 1

Table 1: Hyperparameters for Reinforcement Learning

Training

As mentioned before, a valid way for training multiple ho-
mogeneous agents through reinforcement learning is to train
only one instance and then to copy the learned policy to all
instances of the homogeneous group (Egorov (2016)). This
also resembles nature, where for example multiple schooling
fish follow the same behavioral policy.

For this purpose, the DQN and DDPG implementations
of Keras-RL (cf. Plappert (2016)) were used. Keras-RL is
originally developed for OpenAl Gym Environments (Plap-
pert (2016)), in which only single agents interact with these
environments through a step(action)-method, which is given
an action and returns an observation, a reward and a done
flag, indicating whether the current episode is finished. This
interface was also used in the proposed swarm environment
to train a single agent to avoid the present predator with
the previously mentioned rewards, action and observation
spaces. During the training of one agent, the other agents
are present as well, onto which the policy (i.e. the neural
network) of the learning agent is copied after each episode.
An episode ends if the learning agent is caught by the preda-
tor or 10, 000 steps (frames) were executed.

During training, the edge lengths of the space were 40 x40
pixels, although it wraps around at the edges. Please note
that the agents and the predator could be positioned at any
real value in the interval [0, 40]. However, the values in the
3-tuples of the observation were normalized to [0, 1] anyway.
The agents and the predator were represented by circles of
radius 1, with an agent being caught if the distance of its
position and the position of the predator is below 2. Also,
during training only 10 agents were present.

In order to find a good configuration for the parameters



Figure 2: Swarm formation in the first 40 frames of an episode of SELFishpgn. Agents (white) and predator (red) were
randomly initialized. Kernel Density Estimation Phillips et al. (2006) was used to highlight the dense regions of the multi-agent

swarm. Note that the space wraps around the edges.

of the reinforcement learning algorithms, many runs were
executed. The quality of the parameter configuration of the
training run was assessed during a test phase based on the
cumulative reward the learning agent could acquire, which
essentially equals the number of time steps it could survive.
The number of neighboring agents that could be observed
was also varied as parameter. See Table 1 for the best pa-
rameters found.

Even for the small number of agents which were
present during the training, a swarming behavior could
be observed when the learned behavior of one agent
was transferred to the others. Since the observation
of an agent is partial and thus limited to the 3-tuple
(disteighbor, » AITectionyeighpor, , OTieNtationyeighpor, ) for the n
nearest neighbors, the number of agents as well as the size
of the space can be increased without breaking the learned
policy. With this even better swarming behavior can be ob-
served, which shall be further evaluated in the next section.

Simulations and Results

First we want to give an impression of the swarms that
are forming from reinforcement learning. See Figure 2 for
the formation of a swarm in the first 40 frames of a test
episode of SELFishpgy. With a continuous action space,
SELFishpppg, exhibits similar behavior although the swarm
tends to be more dense. The swarm presumably forms be-
cause one agent learns that the predator might get distracted
from it if it stays close to other agents which prolongs its life
and thereby its accumulated reward.

Boids enforces the alignment, cohesion and separation of
neighboring agents. This can be expressed by vector cal-
culations together with weights which set these three rules
in context. To make the scenario more similar to the rein-
forcement learning setting, another force which pushes the
Boids away from the predator was added (altogether with a
weight for this behavior which sets it in context to the other
rules). To find a good configuration for the alignment, co-
hesion, separation and predator avoidance weight, multiple

runs with different parameter setting were executed. Again,
the quality of a setting was evaluated based on the number
of time steps a certain boid could survive.

If it is only about the survival of an agent, a simple strat-
egy one could think of is to simply turn in the opposite direc-
tion of the predator and to move away from it regardless of
the surrounding agents. This policy will be called TurnAway
in the following and will be given for comparison'.

Alignment and Cohesion

As Boids enforces the alignment and the cohesion of the
agents, we want to compare the swarms resulting from
predator avoidance through reinforcement learning to Boids
by these means. As the orientation of an agent is measured
as angle in [0°,360°) (facing east corresponds to 0°), the
alignment of the agents can be measured as deviation from a
mean angle of a group (see Figure 3). The absolute deviation
of each agent from this mean angle was summed and aver-
aged over the number of agents. To measure the cohesion
of the swarm, the average distance between the agents was
calculated. For this the distance between all agents 7 and j
was summed and averaged by the number of pairs of agents.

Considering that the agents flee from a predator and the
space wraps around at the edges, multiple flocks with dif-
ferent orientations, depending on their position in regard to
the predator, might form, as it is already evident from the
Figures 1 and 2. That is why it did not seem sensible to cal-
culate alignment and cohesion over all agents in the space.
To counter this, the density-based clustering method DB-
SCAN (Ester et al. (1996)) and particularly its scikit-learn
implementation (Pedregosa et al. (2011)) was used before-
hand and the average deviation from the mean angle and the
average distance between two agents was only calculated for
agents in a specific cluster (see Figure 4 for an example).
The measurements over all agents are given for comparison.

"For a short video showing all implemented policies please re-
ferto https://youtu.be/SY59CYaqgWpE


https://youtu.be/SY59CYaqWpE
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Figure 3: Considering the orientation of five agents in
space, a mean angle (black) and the deviation from this in
(—180°,180°] can be computed (Watson (1983)).
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Figure 4: Example Clustering for SELFishpon with 40
agents (predator as red dot).

Figure 5 shows the number of agents in a specific cluster,
when 40 agents were present in a space of 40 x 40 pixels. It
is visible that the TurnAway strategy produces many noise
points on average. The clusters that are found for TurnAway
are mostly due to the agents moving in the same direction
to avoid the predator and also overlapping when wrapping
around the edges of the space. Boids and the two rein-
forcement learning approaches used in SELFish, DQN and
DDPG, produce rather similar cluster numbers and sizes on
average, with DDPG having a tendency to form one large
cluster.

By looking at the average deviation from the mean ori-
entation angle of the agents inside clusters (see Figure 6)
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Figure 5: Average number of agents in a respective cluster
(cluster ID given) with noise points being agents that could
not be assigned to a specific cluster.
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Figure 6: Average deviation from the mean orientation angle
of the agents over clusters.

one can see that Boids produces the most aligned groups
of agents which generally move in the same direction.
SELFishpgn and SELFishpppg are deviating more, presum-
ably because agents following these policies tend to kind
of quiver. Also these agents show the behavior of creat-
ing a line at the point at which they would again move to-
wards the predator because of the torus environment. At
these lines the agents circulate until the predator moves into
their direction. For TurnAway only groups of agents mov-
ing in the same direction are detected anyway, with the aver-
age angle deviation being distorted by agents coming from
the other side of the space and moving in the opposite di-
rection. One might question whether the swarms (respec-
tively clusters) found for SELFishpon or SELFishpppg also
solely result from the fact that the agents learned to turn
away from the predator and thereby move in the same di-
rection. This can be countered by the observation that if the
predator is pinned down at a fixed position (it cannot be re-
moved completely as it is part of the agents’ observation),
the learning agents still form a swarm at the greatest possi-
ble distance from the predator where they circulate around
each other. Figure 7 shows the average pairwise distance
between agents either inside clusters, between noise points
or between all agents, which is homogeneous over all four
agent policies, with only SELFishpppg tending to produce
somewhat denser agent groups. The homogeneity between
the behavioral strategies with regard to the average pairwise
distance also results from the DBSCAN clustering.

9445

Boids SELFishpppg SELFishpqn TurnAway

Over all
Noise Points
0

1

2

=)
w

=)
[

Avg. dist between agents
o
[

e
o

Figure 7: Average pairwise distance between agents ei-
ther inside clusters, between noise points or over all. Edge
lengths of the space normalized to 1 for distance calculation.
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Figure 8: Average episode length for each of the behavior
strategies with varying number of agents in the environment.
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Figure 9: Number of caught agents divided by the time it
took with varying number of agents in the environment.

Agent Survival

For the reinforcement learning algorithms the reward was
defined such that the single learning agent received +1 for
every step and —1000 for being caught. The maximization
of the accumulated reward should encourage it to stay alive
as long as possible. After the end of an episode, which ended
when the learning agent was caught or 10, 000 steps passed,
the learned policy was copied to all other agents. Figure 8
shows the mean episode length for the different policies,
which essentially corresponds to the mean accumulated re-
ward of the learning agents. For the static policies, Boids
and TurnAway, it corresponds to the time it took until a cer-
tain agent was caught. Note that although the number of
agents in the environment is varied, the parameter for Boids
or the policies for SELFishpon/pppg are still those that were
determined in smaller settings with only 10 agents.

It turns out that when evaluating the actual survival rate of
every single agent, the best strategy to survive is to simply
turn away from the predator. This is also true considering
the whole swarm, i.e. all agents. In Figure 9, the absolute
number of caught agents in an episode was divided by the
length of the episode (reduced by a transient phase of 100
frames for swarm formation). These measurements were
then again averaged over multiple episodes and runs (with
different seeds).

This raises the question why this behavior was not found
by the reinforcement learning algorithms. The outcome of

—— Boids 0.6
SELFishpppg

—— SELFishpgn
—— TurnAway
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Figure 10: Density of an agent in accordance to the Ker-
nel Density Estimation in the last 100 time steps before it is
caught (mean for multiple agents).

the reinforcement learning could potentially be explained
considering the Prisoner’s Dilemma (Poundstone (1992)). In
this game-theoretical example, prisoners A and B are kept
in arrest without means to communicate. Simultaneously,
both are given the opportunity either to betray the other by
testifying that the other committed the crime, or to cooperate
with the other by remaining silent with the respective pay-
offs shown in Table 2. The only Nash equilibrium (Nash
(1951)) is that both prisoners defect as this yields less charge
for each of them than if one stays silent while the other pris-
oner keeps its strategy unchanged and testifies that the other
committed the crime (betrays). The dilemma is that mutual
cooperation yields a better outcome although it is not ratio-
nal from a self-interested perspective. For our reinforcement
learning setting it could be the case that the TurnAway strat-
egy was not found because the learning process got stuck
in the Nash equilibrium of staying with the swarm (analo-
gous to the mutual defection in the Prisoner’s Dilemma). If
all agents keep their policy of staying close to each other,
the one agent deviating has a higher chance of being chosen
as prey. Our learning procedure is in conformity with this
as one learning agent adjusts its policy in such a way that
it obtains the highest reward while the policies of the other
agents stay unchanged (during an episode). This assumption
is also supported by looking at the procedure how agents are
caught (see Figure 11): When the predator moves in the di-
rection of the swarm, it collaboratively moves away, with a
few agents being left behind. The community of the agents
gets smaller and smaller as some sheer off until one is sepa-

B | B stays silent B betrays
A (cooperates) (defects)
A stays silent -1 0
(cooperates) -1 -3
A betrays -3 2
(defects) 0 -2

Table 2: Prisoner’s dilemma payoff matrix
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Figure 11: Separation of agents from the swarm before being caught.

rated and picked as prey. This is also evident considering the
density measurements of agents in the time steps before it is
being caught. Figure 10 shows the density around an agent
in accordance to the Kernel Density Estimation (cf. Figure
2 and 11) in the last 100 time steps of its life.

Conclusion and Future Work

With SELFish we showed that flocking behavior can emerge
solely from the fact that agents trained by multi-agent re-
inforcement learning try to avoid being caught by a preda-
tor, given the circumstance that flocking yields a benefit like
distracting the predator. Only one agent was trained at a
time with a reward structure that encourages to avoid being
caught as long as possible. After each episode the learn-
ing policy was copied onto all other agents. The results
for SELFishpgn and SELFishpppg concerning the alignment
and cohesion but also with regard to the survival chances of
the agents were compared with Boids, a common approach
for algorithmic flocking simulations. Out results show, that
the measurements for the swarm are quite similar to Boids.
Considering the survival of an agent, surprisingly, the re-
inforcement learning algorithms did not find the policy of
simply turning away from the predator (without caring about
flocking) although it yields higher accumulated rewards w.r.t
our reward structure. We propose that staying in the swarm
is a Nash equilibrium (comparable to defecting in the Pris-
oner’s dilemma) and want to further investigate this assump-
tion. Also, we would like to examine if other beneficial
properties of a swarm, like increased hydrodynamic effi-
ciency or easier search for food, which were not modeled
by us, also lead to flocking behavior in a reinforcement sce-
nario. This would probably also facilitate the steering of the
swarm. Co-evolution of the behavior of the predator and its
prey through reinforcement learning could be further investi-
gated in our continuous environment. In our setting, agents
could freely roam in a torus-like environment without ob-
stacles or collisions. Naturally, there are enhancements to
this like adding walls, obstacles and collisions between the
agents.
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