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ABSTRACT
We propose Strong Emergent Policy (STEP) approximation, a scalable
approach to learn strong decentralized policies for cooperative
MAS with a distributed variant of policy iteration. For that, we use
function approximation to learn from action recommendations of
a decentralized multi-agent planning algorithm. STEP combines
decentralized multi-agent planning with centralized learning, only
requiring a generative model for distributed black box optimization.
We experimentally evaluate STEP in two challenging and stochastic
domains with large state and joint action spaces and show that
STEP is able to learn stronger policies than standard multi-agent
reinforcement learning algorithms, when combining multi-agent
open-loop planning with centralized function approximation. The
learned policies can be reintegrated into the multi-agent planning
process to further improve performance.
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1 INTRODUCTION
Cooperative multi-agent systems (MAS) are popular in artificial
intelligence research and have many potential real-world applica-
tions like autonomous vehicles, sensor networks, and robot teams
[4–6]. However, decision making in MAS is extremely challenging
due to intractable state and joint action spaces as well as stochastic
dynamics and uncertainty w.r.t. other agents’ behavior.

Centralized control does not scale well in large MAS due to
the curse of dimensionality, where state and joint action spaces
grow exponentially with the number of agents [1, 3–7]. Therefore,
decentralized control is recommended, where each agent decides its
individual actions under consideration of other agents, providing
better scalability and robustness [4–7]. Decentralized approaches to
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decision making in MAS typically require a coordination mechanism
to solve joint tasks and to avoid conflicts [3].

Recent approaches to learn strong policies are based on policy
iteration and combine planning with deep reinforcement learning,
where a neural network is used to imitate the action recommen-
dations of a tree search algorithm. In return, the neural network
provides an action selection prior for the tree search [2, 13]. This it-
erative procedure, called Expert Iteration (ExIt), gradually improves
both the performance of the tree search and the neural network
[2]. ExIt has been successfully applied to zero-sum games, where a
single agent improves itself by self-play. However, ExIt cannot be
directly applied to large cooperative MAS, since using a centralized
tree search is practically infeasible for such problems [4, 5].

In this work, we propose Strong Emergent Policy (STEP) approxi-
mation, a scalable approach to learn strong decentralized policies
for cooperative MAS with a distributed variant of policy iteration.
For that, we use function approximation to learn from action rec-
ommendations of a decentralized multi-agent planner. STEP com-
bines decentralized multi-agent planning with centralized learning,
where each agent is able to explicitly reason about emergent depen-
dencies to make coordinated decisions. Our approach only requires
a generative model for distributed black box optimization.

2 METHOD
Given a Multi-agent Markov Decision Process (MMDP) M = ⟨D,S,
A,P,R⟩ [3] with a (finite) set of agents D = {1, ...,N }, a (finite)
set of states S, a (finite) set of joint actions A = A1 × ... × AN , a
transition probability function P : S×A×S ← [0, 1], and a global
reward function R : S × A ← R, we extend the ExIt framework
of [2, 13] to cooperative MAS to approximate a strong joint policy
π̂ (st ) = ⟨π̂1(st ), ..., π̂N (st )⟩ ∈ A for each state st ∈ S. For that, we
use function approximation to learn from action recommendations
of a decentralized multi-agent planner to approximate strong de-
centralized policies π̂i for each agent i ∈ D, which are combined
into a strong joint policy π̂ for the MAS. The training procedure of
STEP consists of a planning and a learning step.

In the planning step, a decentralized planning algorithm is exe-
cuted for a state st ∈ S to recommend an action at,i for each agent
i ∈ D according to the relative action frequencies p(at,i |st ) ∈ [0, 1]
calculated during planning. The individual actions are combined
into a joint action at = ⟨at,1, ...,at,N ⟩ and executed to observe a
new state st+1 ∈ S and a global reward rt = R(st ,at ).



Figure 1: Architecture of STEP. The policy (red box) can
be used as a prior for action selection and to predict other
agents’ behavior for coordination. The value function is
used to evaluate leaf states for multi-agent planning [11].

In the learning step, a parametrized function approximator fθ =
⟨π̂ , V̂ ⟩ is used to approximate an optimal joint policy π∗ by approx-
imating optimal decentralized policies π∗i for each agent i ∈ D and
the optimal value function V ∗. π̂i is approximated by minimizing
the cross-entropy loss between p(at,i |st ) and π̂i (at,i |st ), while V̂
is approximated via temporal difference learning [14, 15].

fθ can be reintegrated into the planning step to further improve
performance by providing an action selection prior π̂i similarly to
[2, 13], a coordination mechanism to predict other agents’ behavior
via π̂ [4], and a leaf state evaluator V̂ to compensate for the limited
search depth of the decentralized multi-agent planner [11]. The
architecture of STEP is shown in Fig. 1.

3 RESULTS
We tested STEP in the Pursuit & Evasion domain (Fig. 2a and [16, 17])
with 2 agents and in the Smart Factory domain (Fig. 2b-c and [11])
with 4 agents. In the training phase, we applied STEP to both decen-
tralized open-loop (DOLUCT) and closed-loop (DMCTS) planning,
and compared the progress with different instances of DOLUCT us-
ing a random joint policy π̂ or a baseline value function of V̂ (st ) = 0
as well as a centralized open-loop version of DICE [9, 11]. In the
test phase, we extracted the decentralized policies π̂i approximated
with STEP after every tenth training episode and compared them
with Distributed Q-Learning (DQL) [16] and Distributed Actor-Critic
(DAC) [6]. We implemented two variants of each DQL and DAC,
where one variant was trained on the global reward R and the other
one was trained on a decomposed local reward similarly to [7].

The results are shown in Fig. 3. Fig. 3a and 3c indicate that
open-loop planning algorithms like DOLUCT are especially suited
for STEP, when the domains are too complex to provide sufficient
computation budget as already noted for single-agent problems
[8, 10, 12, 18]. The approximated policies π̂i of STEP with DOLUCT
are able to clearly outperform standard multi-agent reinforcement
learning algorithms like DQL and DAC in both domains. Providing
a larger computation budgetnb seems to be beneficial when approx-
imating strong decentralized policies with STEP as shown in Fig. 3b
and 3d. The learned policies can be reintegrated into the planning
process to further improve performance of the multi-agent planner
as shown in Fig. 3a and 3c for DOLUCT and DMCTS.

(a) Pursuit & Evasion (b) Smart Factory (SF) (c) An agent in SF [11]

Figure 2: (a) Pursuit & Evasion (N = 4) with pursuers (red cir-
cles) and evaders (blue circles). (b) Machine grid of the Smart
Factory (SF) with the numbers denoting the machine type.
(c) An agent i (red circle) with tasksi = [{9, 12}, {3, 10}] in the
SF of Fig. 2b. It should get to the green pentagonal machines
first before going to the blue rectangular machines [11].

(a) Pursuit & Evasion (Training) (b) Pursuit & Evasion (Test)

(c) Smart Factory (Training) (d) Smart Factory (Test)

Figure 3: Average training and test progress of Rcapture (Pur-
suit & Evasion) and score50 (Smart Factory) different multi-
agent planning and learning algorithms of 30 runs. Shaded
areas show the 95 % confidence interval.

4 CONCLUSION
We proposed STEP, a scalable approach to learn strong decentral-
ized policies for cooperative MAS with a distributed variant of
policy iteration by combining decentralized multi-agent planning
with centralized learning, where each agent is able to explicitly rea-
son about emergent dependencies to make coordinated decisions,
only requiring a generative model for distributed black box opti-
mization. Our results show that STEP is able to produce stronger
policies than standard multi-agent reinforcement algorithms, which
can be reintegrated into the planning process to further improve
performance. For the future, we plan to address partially observable
domains by combining multi-agent planning with deep recurrent
reinforcement learning for cooperative MAS.
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