
Memory Bounded Open-Loop Planning in Large POMDPs using
Thompson Sampling

Thomy Phan
LMU Munich

thomy.phan@ifi.lmu.de

Lenz Belzner
MaibornWolff

lenz.belzner@maibornwolff.de

Marie Kiermeier
LMU Munich

marie.kiermeier@ifi.lmu.de

Markus Friedrich
LMU Munich

markus.friedrich@ifi.lmu.de

Kyrill Schmid
LMU Munich

kyrill.schmid@ifi.lmu.de

Claudia Linnhoff-Popien
LMU Munich

linnhoff@ifi.lmu.de

Abstract

State-of-the-art approaches to partially observable planning
like POMCP are based on stochastic tree search. While these
approaches are computationally efficient, they may still con-
struct search trees of considerable size, which could limit
the performance due to restricted memory resources. In this
paper, we propose Partially Observable Stacked Thompson
Sampling (POSTS), a memory bounded approach to open-
loop planning in large POMDPs, which optimizes a fixed size
stack of Thompson Sampling bandits. We empirically evalu-
ate POSTS in four large benchmark problems and compare its
performance with different tree-based approaches. We show
that POSTS achieves competitive performance compared to
tree-based open-loop planning and offers a performance-
memory tradeoff, making it suitable for partially observable
planning with highly restricted computational and memory
resources.

Introduction
Many real-world problems can be modeled as Partially Ob-
servable Markov Decision Process (POMDP), where the
true state is unknown to the agent due to limited and noisy
sensors. The agent has to reason about the history of past
observations and actions, and maintain a belief state as a
distribution of possible states. POMDPs have been widely
used to model decision making problems in the context of
planning and reinforcement learning (Ross et al. 2008).

Solving POMDPs exactly is computationally intractable
for domains with enormous state spaces and long planning
horizons. First, the space of possible belief states grows ex-
ponentially w.r.t. the number of states N , since that space is
N -dimensional, which is known as curse of dimensionality
(Kaelbling, Littman, and Cassandra 1998). Second, the num-
ber of possible histories grows exponentially w.r.t. the hori-
zon length, which is known as the curse of history (Pineau,
Gordon, and Thrun 2006).

In the last few years, Monte-Carlo planning has been pro-
posed to break both curses with statistical sampling. These
methods construct sparse trees over belief states and actions,
representing the state-of-the-art for efficient planning in

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

large POMDPs (Silver and Veness 2010; Somani et al. 2013;
Bai et al. 2014). While these approaches avoid exhaus-
tive search, the constructed closed-loop trees can still be-
come arbitrarily large for highly complex domains, which
could limit the performance due to restricted memory re-
sources (Powley, Cowling, and Whitehouse 2017). In con-
trast, open-loop approaches only focus on searching ac-
tion sequences and are independent of the history and be-
lief state space. Open-loop approaches are able to achieve
competitive performance compared to closed-loop planning,
when the problem is too large to provide sufficient computa-
tional and memory resources (Weinstein and Littman 2013;
Perez Liebana et al. 2015; Lecarpentier et al. 2018). How-
ever, open-loop planning has been a less popular choice for
decision making in POMDPs so far (Yu et al. 2005).

In this paper, we propose Partially Observable Stacked
Thompson Sampling (POSTS), a memory bounded approach
to open-loop planning in large POMDPs, which optimizes a
fixed size stack of Thompson Sampling bandits.

To evaluate the effectiveness of POSTS, we formu-
late a tree-based approach, called Partially Observable
Open-Loop Thompson Sampling (POOLTS) and show that
POOLTS is able to find optimal open-loop plans with suffi-
cient computational and memory resources.

We empirically test POSTS in four large benchmark
problems and compare its performance with POOLTS and
other tree-based approaches like POMCP. We show that
POSTS achieves competitive performance compared to tree-
based open-loop planning and offers a performance-memory
tradeoff, making it suitable for partially observable planning
with highly restricted computational and memory resources.

Background
Partially Observable Markov Decision Processes
A POMDP is defined by a tuple M =
〈S,A,P,R,O,Ω, b0〉, where S is a (finite) set of states, A
is the (finite) set of actions, P(st+1|st, at) is the transition
probability function,R(st, at) is the scalar reward function,
O is a (finite) set of observations, Ω(ot+1|st+1, at) is the
observation probability function, and b0 is a probability
distribution over initial states s0 ∈ S. It is always assumed,
that st, st+1 ∈ S, at ∈ A, and ot, ot+1 ∈ O at time step t.

A history ht =
[
a0, o1, ..., at−1, ot

]
is a sequence of ac-

tions and observations. A belief state bht
(st) is a sufficient

statistic for history ht and defines a probability distribution
over states st given ht. B is the space of all possible belief
states. b0 represents the initial belief state bh0 . The belief
state can be updated by Bayes theorem:

bht
(st) = ηΩ(ot|st, a)

∑
s∈S
P(st|s, a)bh(st) (1)

where η = 1
Ω(ot+1|bh,a) is a normalizing constant, a = at−1

is the last action, and h is the history without a and ot.
The goal is to find a policy π : B → A, which maximizes

the return Gt at state st for a horizon T :

Gt =

T−1∑
k=0

γk · R(st+k, at+k) (2)

where γ ∈ [0, 1] is the discount factor. If γ < 1, then present
rewards are weighted more than future rewards.

The value function V π(bt) = Eπ[Gt|bt
]

is the expected
return conditioned on belief states given a policy π. An
optimal policy π∗ has a value function V π

∗
= V ∗ with

V ∗(bt) ≥ V π
′
(bt) for all bt ∈ B and π′ 6= π∗.

Multi-armed Bandits
Multi-armed Bandits (MABs or bandits) are fundamental de-
cision making problems, where an agent has to repeatedly
select an arm among a given set of arms in order to max-
imize its future pay-off. MABs can be considered as prob-
lems with a single state s, a set of actions a ∈ A, and a
stochastic reward function R(s, a) := Xa, where Xa is a
random variable with an unknown distribution fXa

(x). To
solve a MAB, one has to determine the action, which max-
imizes the expected reward E

[
Xa

]
. The agent has to bal-

ance between sufficiently trying out actions to accurately es-
timate their expected reward and to exploit its current knowl-
edge on all arms by selecting the arm with the currently
highest expected reward. This is known as the exploration-
exploitation dilemma, where exploration can lead to actions
with possibly higher rewards but requires time for trying
them out, while exploitation can lead to fast convergence but
possibly gets stuck in a local optimum. In this paper, we will
cover UCB1 and Thompson Sampling as MAB algorithms.

UCB1 In UCB1, actions are selected by maximizing the
upper confidence bound of action values UCB1(a) = Xa +

c
√

log(Ntotal)
Na

, where Xa is the current average reward when
choosing a, c is an exploration constant, Ntotal is the total
number of action selections, and Na is the number of times
action a was selected. The second term represents the ex-
ploration bonus, which becomes smaller with increasing Na
(Auer, Cesa-Bianchi, and Fischer 2002).

UCB1 is a popular MAB algorithm and widely used in
various challenging domains (Kocsis and Szepesvári 2006;
Bubeck and Munos 2010; Silver et al. 2016; 2017).

Thompson Sampling Thompson Sampling is a Bayesian
approach to balance between exploration and exploitation
of actions (Thompson 1933). The unknown reward distri-
bution of Xa of each action a ∈ A is modeled by a
parametrized likelihood function Pa(x|θ) with a parameter
vector θ. Given a prior distribution Pa(θ) and a set of past
observed rewards Da = {xa,1, xa,2, ..., xa,Na

}, the poste-
rior distribution Pa(θ|Da) can be inferred by using Bayes
rule Pa(θ|Da) ∝

∏
i Pa(xa,i|θ)Pa(θ). The expected re-

ward of each action a ∈ A can be estimated by sampling
θ ∼ Pa(θ|Da) from the posterior. The action with the high-
est sampled expected reward Eθ

[
Xa

]
is selected.

Thompson Sampling has been shown to be an effective
and robust algorithm for making decisions under uncertainty
(Chapelle and Li 2011; Kaufmann, Korda, and Munos 2012;
Bai, Wu, and Chen 2013; Bai et al. 2014).

Planning in POMDPs
Planning searches for an (near-)optimal policy given a
model M̂ of the environment M , which usually consists
of explicit probability distributions of the POMDP. Unlike
offline planning, which searches the whole (belief) state
space to find the optimal policy π∗, local planning only fo-
cuses on finding a policy πt for the current (belief) state
by taking possible future (belief) states into account (We-
instein and Littman 2013). Thus, local planning can be ap-
plied online at every time step at the current state to rec-
ommend the next action for execution. Local planning is
usually restricted to a time or computation budget nb due
to strict real-time constraints (Bubeck and Munos 2010;
Weinstein and Littman 2013; Perez Liebana et al. 2015).

In this paper, we focus on local Monte-Carlo planning,
where M̂ is a generative model, which can be used as
black box simulator (Kocsis and Szepesvári 2006; Silver
and Veness 2010; Weinstein and Littman 2013; Bai et al.
2014). Given st and at, the simulator M̂ provides a sample
〈st+1, ot+1, rt〉 ∼ M̂(st, at). Monte-Carlo planning algo-
rithms can approximate π∗ and V ∗ by iteratively simulating
and evaluating action sequences without reasoning about ex-
plicit probability distributions of the POMDP.

Local planning can be closed- or open-loop. Closed-loop
planning conditions the action selection on histories of ac-
tions and observations. Open-loop planning only conditions
the action selection on previous sequences of actions pT =
[a1, ..., aT] (also called open-loop plans or simply plans)
and summarized statistics about predecessor (belief) states
(Bubeck and Munos 2010; Weinstein and Littman 2013;
Perez Liebana et al. 2015). An example is shown in Fig. 1.
A closed-loop tree for a domain with Ω(st+1|st, at) = 0.5
is shown in Fig. 1a, while Fig. 1b shows the corresponding
open-loop tree which summarizes the observation nodes of
Fig. 1a within the blue dotted ellipses into history distribu-
tion nodes. Open-loop planning can be further simplified by
only regarding statistics about the expected return of actions
at specific time steps (Fig. 1c). In that case, only a stack of
T statistics is used to sample plans for simulation and eval-
uation (Weinstein and Littman 2013).

Partially Observable Monte-Carlo Planning (POMCP) is

(a) closed-loop tree (b) open-loop tree (c) stacked

Figure 1: Illustration of closed- and open-loop planning
schemes. (a) Closed-loop tree with state observations (cir-
cular nodes) and actions (rectangular nodes). Red links cor-
respond to stochastic observations made with a probability
of 0.5. (b) Open-loop tree with links as actions and history
distribution nodes according to the blue dotted ellipses in
Fig. 1a. (c) Open-loop approach with stack of action distri-
butions according to the blue dotted ellipses in Fig. 1b.

a closed-loop approach based on Monte-Carlo Tree Search
(MCTS) (Silver and Veness 2010). POMCP uses a search
tree of histories with o-nodes representing observations and
a-nodes representing actions (Fig. 1a). Each o-node has a
visit count N(ht) and a value estimate V (ht) = V (bt) for
history ht and belief state bt. Each a-node has a visit count
N(ht) and a value estimate Q(ht, at) = E[Gt|ht, at] for
action at and history ht. A simulation starts at the current
belief state and is divided into two stages: In the first stage,
a tree policy πtree is used to traverse the tree until a leaf node
is reached. Actions are selected via πtree(ht) and simulated
in M̂ to determine the next nodes to visit. πtree can be imple-
mented with MABs, where each o-node represents a MAB.
In the second stage, a rollout policy πrollout is used to sample
action sequences until a terminal state or a maximum search
depth T is reached. The observed rewards are accumulated
to returns Gt (Eq. 2), propagated back to update the value
estimate of every node in the simulated path, and a new leaf
node is added to the search tree. πrollout can be used to in-
tegrate domain knowledge into the planning process to fo-
cus the search on promising states (Silver and Veness 2010).
The original version of POMCP uses UCB1 for πtree and is
shown to converge to the optimal best-first tree with suffi-
cient computation (Silver and Veness 2010).

(Lecarpentier et al. 2018) formulates an open-loop vari-
ant of MCTS using UCB1 as πtree, called Open-Loop Upper
Confidence bound for Trees (OLUCT), which could be easily
extended to POMDPs by constructing a tree, which summa-
rizes all o-nodes to history distribution nodes (Fig. 1b).

Open-loop planning generally converges to sub-optimal
solutions in stochastic domains, since it ignores (belief) state
values V (bt) and optimizes the node values V (Nt) (Fig. 1b)
instead (Lecarpentier et al. 2018). If the problem is too com-
plex to provide sufficient computation budget nb or mem-
ory capacity, then open-loop approaches are competitive to
closed-loop approaches, since they need to explore a much
smaller search space to converge to an appropriate solution
(Weinstein and Littman 2013; Lecarpentier et al. 2018).

Related Work
Tree-based approaches to open-loop planning condition the
action selection on previous action sequences as shown in
Fig. 1b (Bubeck and Munos 2010; Perez Liebana et al. 2015;
Lecarpentier et al. 2018). Such approaches have been thor-
oughly evaluated for fully observable problems, but have
been less popular for partially observable problems so far
(Yu et al. 2005). POSTS is based on stacked open-loop plan-
ning, where a stack of T distributions over actions is main-
tained to generate open-loop plans with high expected return
(Weinstein and Littman 2013; Belzner and Gabor 2017).
Unlike previous approaches, POSTS is a memory-bounded
open-loop approach to partially observable planning.

(Yu et al. 2005) proposed an open-loop approach to plan-
ning in POMDPs by using hierarchical planning. An open-
loop plan is constructed at an abstract level, where uncer-
tainty w.r.t. particular actions is ignored. A low-level plan-
ner controls the actual execution by explicitly dealing with
uncertainty. POSTS is more general, since it performs plan-
ning directly on the original problem and does not require
the POMDP to be transformed for hierarchical planning.

(Powley, Cowling, and Whitehouse 2017) proposed a
memory bounded version of MCTS with a state pool to
add, discard, or reuse states depending on their visitation
frequency. However, this approach cannot be easily adapted
to tree-based open-loop approaches, because it requires (be-
lief) states to be identifiable. POSTS does not require a pool
to reuse states or nodes, but only maintains a fixed size stack
of Thompson Sampling bandits, which adapt according to
the temporal dependencies between actions.

Open-Loop Search with Thompson Sampling
Generalized Thompson Sampling We use a variant of
Thompson Sampling, which works for arbitrary reward dis-
tributions as proposed in (Bai, Wu, and Chen 2013; Bai et
al. 2014) by assuming that Xat follows a Normal distribu-
tion N (µ, 1

τ) with unknown mean µ and precision τ = 1
σ2 ,

where σ2 is the variance. 〈µ, τ〉 follows a Normal Gamma
distribution NG(µ0, λ, α, β) with λ > 0, α ≥ 1, and
β ≥ 0. The distribution over τ is a Gamma distribution
τ ∼ Gamma(α, β) and the conditional distribution over µ
given τ is a Normal distribution µ ∼ N (µ0,

1
λτ).

Given a prior distribution P (θ) = NG(µ0, λ0, α0, β0)
and n observations D = {x1, ..., xn}, the posterior distri-
bution is defined by P (θ|D) = NG(µ1, λ1, α1, β1), where
µ1 = λ0µ0+nX

λ0+n , λ1 = λ0 + n, α1 = α0 + n
2 , and

β1 = β0 + 1
2 (nσ2 + λ0n(X−µ0)2

λ0+n). X is the mean of all
values in D and σ2 = 1

n

∑n
i=1(xi −X)2 is the variance.

The posterior is inferred for each action at ∈ A to sam-
ple an estimate µat for the expected return. The action with
the highest estimate is selected. The complete formulation is
given in Algorithm 1.

The prior should ideally reflect knowledge about the un-
derlying model, especially for initial turns, where only a
small amount of data has been observed (Honda and Take-
mura 2014). If no knowledge is available, then uninforma-
tive priors should be chosen, where all possibilities can be

Algorithm 1 Generalized Thompson Sampling

procedure ThompsonSampling(Nt)
for at ∈ A do

Infer 〈µ1, λ1, α1, β1〉 from prior and Xat , σ
2
a, nat

µat , τat ∼ NG(µ1, λ1, α1, β1)
return argmaxat∈A(µat)

procedure UpdateBandit(Nt, Gt)
nat ← nat + 1
〈Xold,at , Xat〉 ← 〈Xat , (natXold,at +Gt)/(nat +1)〉
sat ← [(nat−1)sat +(Gt−Xold,at)(Gt−Xat)]/nat

sampled (almost) uniformly. This can be achieved by choos-
ing the priors such that the variance of the resulting Nor-
mal distribution N (µ0,

1
λ0τ

) becomes infinite (1
λ0τ0

→ ∞
and λ0τ → 0). Since τ follows a Gamma distribution
Gamma(α0, β0) with expectation E(τ) = α0

β0
, α0 and β0

should be chosen such that α0

β0
→ 0. Given the hyperparam-

eter space λ0 > 0, α0 ≥ 1, and β0 ≥ 0, it is recommended
to set α0 = 1 and µ0 = 0 to center the Normal distribu-
tion. λ0 should be chosen small enough and β0 should have
a sufficiently large value (Bai et al. 2014).

Monte Carlo Belief State Update The belief state can be
updated exactly according to Eq. 1. However, exact Bayes
updates may be computationally infeasible in POMDPs with
large state spaces due to the curse of dimensionality. For
this reason, we approximate the belief state bht

for history
ht with a particle filter as described in (Silver and Veness
2010). The belief state bht

is represented by a set b̂ht
of K

sample states or particles. After execution of at and observa-
tion of ot+1, the particles are updated by Monte Carlo sim-
ulation. Sampled states st ∼ b̂ht

are simulated with at such
that 〈st+1, o

′
t+1, rt〉 ∼ M̂(st, at). If o′t+1 = ot+1, then st+1

is added to b̂htatot+1 = b̂ht+1 .

POOLTS To evaluate the effectiveness of POSTS com-
pared to other open-loop planners, we first define Partially
Observable Open-Loop Thompson Sampling (POOLTS) and
show that POOLTS is able to converge to an optimal open-
loop plan, if sufficient computational and memory resources
are provided. POOLTS is a tree-based approach based on
OLUCT from (Lecarpentier et al. 2018). Each node Nt rep-
resents a Thompson Sampling bandit and storesXat , sa, and
nat for each action at ∈ A.

A simulation starts at a state st, which is sampled from
the current belief state bht

. The belief state is approximated
by a particle filter b̂ht

as described above. An open-loop tree
(Fig. 1b) is iteratively constructed by traversing the current
tree in a selection step by using Thompson Sampling to se-
lect actions. When a leaf node is reached, it is expanded by a
child node Nnew and a rollout is performed by using a policy
πrollout until a terminal state is reached or a maximum search
depth T is exceeded. The observed rewards are accumulated
to returns Gt (Eq. 2) and propagated back to update the cor-
responding bandit of every node in the simulated path. When
the computation budget nb has run out, the action at with the

highest expected return Xat is selected for execution. The
complete formulation of POOLTS is given in Algorithm 2.

Algorithm 2 POOLTS Planning

procedure POOLTS(ht, T, nb)
Create N0 for ht
while nb > 0 do

nb ← nb − 1
st ∼ b̂ht

TreeSearch(N0, st, T, 0)

return argmaxat∈A(Xat)

procedure TreeSearch(Nt, st, T, d)
if d ≥ T or st is a terminal state then return 0
if Nt is a leaf node then

Expand Nt
Perform rollout with πrollout to sample Gt
return Gt

at ← ThompsonSampling(Nt)

〈st+1, rt, ot+1〉 ∼ M̂(st, at)
Rt ← TreeSearch(Nt+1, st+1, T, d+ 1)
Gt ← rt + γRt
UpdateBandit(Nt, Gt)
return Gt

(Kocsis and Szepesvári 2006; Bubeck and Munos 2010;
Lecarpentier et al. 2018) have shown that tree search al-
gorithms using UCB1 converge to the optimal closed-loop
or open-loop plan respectively, if the computation bud-
get nb is sufficiently large. This is because the expected
state or node values in the leaf nodes become stationary,
given a stationary rollout policy πrollout. This enables the
values in the preceding nodes to converge as well, lead-
ing to state- or node-wise optimal actions. By replacing
UCB1 with Thompson Sampling, the tree search should
still converge to the optimal closed-loop or open-loop plan,
since Thompson Sampling also converges to the optimal
action, if the return distribution of Gt becomes station-
ary (Agrawal and Goyal 2013). (Chapelle and Li 2011;
Bai et al. 2014) empirically demonstrated that Thompson
Sampling converges faster than UCB1, when rewards are
sparse and when the number of arms is large.

POSTS Partially Observable Stacked Thompson Sam-
pling (POSTS) is an open-loop approach, which optimizes
a stack of T Thompson Sampling bandits to search for high-
quality open-loop plans (Fig. 1c). Each bandit Nt stores
Xat , sa, and nat for each action at ∈ A.

Similarly to POOLTS, a simulation starts at a state st,
which is sampled from a particle filter b̂ht , representing
the current belief state bht . Unlike POOLTS, a fixed size
stack of bandits N1, ..., NT is used to sample plans pT =

[a1, ..., aT]. pT is evaluated with the generative model M̂
to observe immediate rewards r1, ..., rT , which are accumu-
lated to returns G1, ..., GT (Eq. 2). Each bandit Nt is then
updated with the corresponding returnGt. When the compu-
tation budget nb has run out, the action at with the highest
expected return Xat is selected for execution. The complete

formulation of POSTS is given in Algorithm 3.

Algorithm 3 POSTS Planning

procedure POSTS(ht, T, nb)
while nb > 0 do

nb ← nb − 1
st ∼ b̂ht

Simulate(N0, st, T, 0)

return argmaxat∈A(Xat)

procedure Simulate(st, T, d)
if d ≥ T or st is a terminal state then return 0
at ← ThompsonSampling(Nt)

〈st+1, rt, ot+1〉 ∼ M̂(st, at)
Rt ← Simulate(st+1, T, d+ 1)
Gt ← rt + γRt
UpdateBandit(Nt, Gt)
return Gt

The idea of POSTS is to only regard the temporal de-
pendencies between the actions of an open-loop plan. The
bandit stack is used to learn these dependencies with the
expected (discounted) return. When a bandit Nt samples
an action at with a resulting reward of rt, then all preced-
ing bandits Nt−k with k < t are updated with Gt−k =
rt−k + γrt−k+1 + ...+ γkrt, using a discounted value of rt.
This is because the actions sampled by all preceding bandits
are possibly relevant for obtaining the reward rt. By only
regarding these temporal dependencies, POSTS is memory
bounded, not requiring a search tree to model dependencies
between histories or history distributions (Fig. 1a and 1b).

Experiments
Evaluation Environments
We tested POSTS in the RockSample, Battleship, and Poc-
Man domains, which are well-known POMDP benchmark
problems for decision making in POMDPs (Silver and Ve-
ness 2010; Somani et al. 2013; Bai et al. 2014). For each
domain, we set the discount factor γ as proposed in (Silver
and Veness 2010). The results were compared with POMCP,
POOLTS, and a partially observable version of OLUCT,
which we call POOLUCT. The problem-size features of all
domains are shown in Table 1.

The RockSample(n,k) problem simulates an agent moving
in an n × n grid containing k rocks (Smith and Simmons
2004). Each rock can be good or bad but the true state of
each rock is unknown. The agent has to sample good rocks,
while avoiding to sample bad rocks. It has a noisy sensor,
which produces an observation ot ∈ {good, bad} for a par-
ticular rock. The probability of sensing the correct state of
the rock decreases exponentially with the agent’s distance
to that rock. Sampling gives a reward of +10, if the rock
is good and −10 otherwise. If a good rock was sampled, it
becomes bad. Moving and sensing do not give any rewards.
Moving past the east edge of the grid gives a reward of +10
and the episode terminates. We set γ = 0.95.

In Battleship five ships of size 1, 2, 3, 4, and 5 respectively
are randomly placed into a 10 × 10 grid, where the agent
has to sink all ships without knowing their actual positions
(Silver and Veness 2010). Each cell hitting a ship gives a
reward of +1. There is a reward of −1 per time step and a
terminal reward of +100 for hitting all ships. We set γ = 1.

PocMan is a partially observable version of PacMan (Sil-
ver and Veness 2010). The agent navigates in a 17×19 maze
and has to eat randomly distributed food pellets and power
pills. There are four ghosts moving randomly in the maze. If
the agent is within the visible range of a ghost, it is getting
chased by the ghost and dies, if it touches the ghost, termi-
nating the episode with a reward of −100. Eating a power
pill enables the agent to eat ghosts for 15 time steps. In that
case, the ghosts will run away, if the agent is under the effect
of a power pill. At each time step a reward of −1 is given.
Eating food pellets gives a reward of +10 and eating a ghost
gives +25. The agent can only perceive ghosts, if they are in
its direct line of sight in each cardinal direction or within a
hearing range. Also, the agent can only sense walls and food
pellets, which are adjacent to it. We set γ = 0.95.

Methods
POMCP We use the POMCP implementation from (Sil-
ver and Veness 2010). πtree selects actions from a set of le-
gal actions at ∈ Alegal(st) with UCB1. πrollout randomly
selects actions from Alegal(s

′), depending on the currently
simulated state s′ ∈ S.

In each simulation step, there is at most one expansion
step, where new nodes are added to the search tree. Thus,
tree size should increase linearly w.r.t. nb in large POMDPs.

POOLTS and POOLUCT POOLTS is implemented ac-
cording to Algorithm 2, where actions are selected from a
set of legal actions at ∈ Alegal(st) with Thompson Sam-
pling (Algorithm 1) in the first stage. πrollout randomly se-
lects actions fromAlegal(s

′), depending on the currently sim-
ulated state s′ ∈ S . POOLUCT is similar to POOLTS but
uses UCB1 as action selection strategy in the first stage.
Since, open-loop planning can encounter different states at
the same node (Fig. 1), the set of legal actions may vary for
each state st ∈ S . We always mask out the statistics of cur-
rently illegal actions, regardless of whether they have high
average action values, to avoid selecting them.

Similarly to POMCP, the search tree size should increase
linearly w.r.t. nb, but with less nodes, since open-loop trees
store summarized information about history distributions.

POSTS POSTS is implemented as a stack of Thompson
Sampling bandits Ni with 1 ≤ i ≤ T according to Algo-
rithm 3. Starting at st, all bandits Ni apply Thompson Sam-
pling to a set of legal actions Alegal(s

′), depending on the
currently simulated state s′ ∈ S. Similarly to POOLTS and
POOLUCT, we mask out the statistics of currently illegal
actions and only regard the value statistics of legal actions
for selection during planning.

Given a horizon of T , POSTS always maintains T
Thompson Sampling bandits, independently of the compu-
tation budget nb.

Table 1: The problem-size features of the benchmark domains RockSample, Battleship, and PocMan.

RockSample(11,11) RockSample(15,15) Battleship PocMan
States |S| 247, 808 7, 372, 800 ∼ 1012 ∼ 1056

Actions |A| 16 20 100 4
Observations |O| 3 3 2 1024

Results
We ran each approach on RockSample, Battleship, and Poc-
Man with different settings for 100 times or at most 12 hours
of total computation. We evaluated the performance of each
approach with the undiscounted return (γ = 1), because we
focus on the actual effectiveness instead of the quality of op-
timization (Bai et al. 2014). For POMCP and POOLTS we
set the UCB1 exploration constant c to the reward range of
each domain as proposed in (Silver and Veness 2010).

Prior Sensitivity Since we assume no additional domain
knowledge, we focus on uninformative priors with µ0 = 0,
α0 = 1, and λ0 = 0.01 as proposed in (Bai et al. 2014). With
this setting, β0 controls the degree of initial exploration dur-
ing the planning phase, thus its impact on the performance of
POOLTS and POSTS is evaluated. The results are shown in
Fig. 2 for β0 = 1000, 4000, 32000 for POOLTS and POSTS.

(a) RockSample(11,11) (b) RockSample(15,15)

(c) Battleship (d) PocMan

Figure 2: Average performance of POSTS, POOLTS,
POOLUCT, and POMCP with different prior values for β0,
different computation budgets nb, and a horizon of T = 100.

In RockSample, POSTS slightly outperforms POOLTS
and keeps up in performance with POMCP. POOLTS
slightly outperforms POSTS and POMCP in Battleship with
POSTS only being able to keep up when nb < 104 or
when β0 = 32000. POMCP clearly outperforms all open-
loop approaches in PocMan. POOLTS slightly outperforms
POSTS in PocMan with POSTS only being to keep up, if
β0 = 32000. POOLUCT performed worst in all domains ex-

cept Battleship, where it performs best with a computation
budget of nb ≤ 1024. POSTS performs slightly better, if β0

is large, but POOLTS seem to be insensitive to the choice of
β0 except in PocMan, where it performs better, if β0 is large.

Horizon Sensitivity We evaluated the sensitivity of all ap-
proaches w.r.t. different horizons T . The results are shown
in Fig. 3 for nb = 4096 1 and β0 = 1000, 4000, 32000 for
POOLTS and POSTS.

(a) RockSample(11,11) (b) RockSample(15,15)

(c) Battleship (d) PocMan

Figure 3: Average performance of POSTS, POOLTS,
POOLUCT, and POMCP with different planning horizons
T and a computation budget of nb = 4096.

In RockSample(11,11), there is a performance peak at
T = 10 for POMCP and POOLUCT, while for POSTS and
POOLTS it is about T = 50. In all other domains, there
seems to be a performance peak at T = 100 for most ap-
proaches. If T > 100, there is no significant improvement or
even degrading performance for most approaches except for
POMCP, which slightly improves in all domains but Rock-
Sample(11,11), if T = 400.

Performance-Memory Tradeoff We evaluated the
performance-memory tradeoff of all approaches by intro-
ducing a memory capacity nmem, where the computation is
interrupted, when the number of nodes exceeds nmem. For

1Using computation budgets between 1024 and 16384 led to
similar plots, thus we stick to nb = 4096 with all approaches re-
quiring less than one second per action (Silver and Veness 2010).

POMCP, we count the number of o-nodes and a-nodes (Fig.
1a). For POOLTS and POOLUCT, we count the number
of history distribution nodes (Fig. 1b). For POSTS, we
count the number of Thompson Sampling bandits, which
is always min{nmem, T}. The results are shown in Fig. 4
for nb = 4096, T = 100, and β0 = 1000, 4000, 32000
for POOLTS and POSTS. POSTS never uses more than
102 = 100 nodes in each setting.

(a) RockSample(11,11) (b) RockSample(15,15)

(c) Battleship (d) PocMan

Figure 4: Average performance of POSTS, POOLTS,
POOLUCT, and POMCP with memory bounds, a compu-
tation budget of nb = 4096 and a horizon of T = 100.

In Rocksample and Battleship, POMCP is outperformed
by POSTS and POOLTS (and also POOLUCT in Battle-
ship). POSTS always performs best in these domains, when
nmem < 1000. POMCP performs best in PocMan by out-
performing POSTS, when nmem > 100 and POOLTS keeps
up with the best POSTS setting, when nmem > 1000.
POOLUCT performs worst except in Battleship, improv-
ing less and slowest with increasing nmem. It outperforms
POMCP in Rocksample(15,15), when nmem ≤ 1000 though.
In PocMan, POOLUCT creates less than 550 nodes, when
nb = 4096, indicating that the search tree construction has
converged and does not improve any further.

Discussion
The experiments show that partially observable open-loop
planning can be a good alternative to closed-loop planning,
when the action space is large, stochasticity is low, and when
computational and memory resources are highly restricted.
Especially approaches based on Thompson Sampling like
POOLTS and POSTS seem to be very effective and robust
w.r.t. the hyperparameter choice. Setting a large value for β0

seems to be beneficial for large problems (Fig. 2). This is be-
cause an enormous search space needs to be explored, while
avoiding premature convergence to poor solutions. However,

if β0 is too large, POSTS and POOLTS might converge too
slowly, thus requiring much more computation (Bai et al.
2014). If T is too large, then the value estimates have very
high variance, making bandit adaptation more difficult. This
could explain the performance stagnation or degradation for
most approaches in Fig. 3, when T > 100. The performance
of POSTS scales similarly to POOLTS w.r.t. nb and T (Fig.
2 and 3). POSTS is also more robust than POOLUCT w.r.t.
changes to nb and T except in Battleship, where both ap-
proaches scale similarly, when β0 is sufficiently large.

POSTS is competitive to POOLTS and superior to
POOLUCT in all settings except in Battleship (when nb is
large) with POOLTS and POOLUCT being shown to the-
oretically converge to optimal open-loop plans, given suf-
ficient computation budget nb and memory capacity nmem.
POSTS is shown to be superior to all other approaches in
RockSample and Battleship, when memory resources are
highly restricted, only being outperformed by the tree-based
approaches in Battleship after thousands of nodes were cre-
ated, consuming much more memory than POSTS, which
only uses 100 nodes at most. This might be due to the rela-
tively large action space of these domains (Table 1), where
all tree-based planners construct enormous trees with high
branching factors, when exploring the effect of each action.
RockSample and Battleship have low stochasticity, since
state transitions are deterministic. In both domains the agent
is primarily uncertain about the real state, thus the planning
quality only depends on the belief state approximation and
the uncertainty about observations (only in RockSample).

POMCP performs best in PocMan. This might be due
to the small action space (Table 1) and high stochasticity
(where all ghosts primarily move randomly), since open-
loop planning is known to converge to sub-optimal solutions
in such domains (Weinstein and Littman 2013; Lecarpen-
tier et al. 2018). However, POMCP has the highest memory
consumption, since it constructs larger trees than open-loop
approaches with the same computation budget (Fig 1a). In
PocMan, POSTS is able to keep up with POOLTS, while
being much more memory-efficient (Fig. 2d and 4d).

Conclusion and Future Work
In this paper, we proposed Partially Observable Stacked
Thompson Sampling (POSTS), a memory bounded approach
to open-loop planning in large POMDPs, which optimizes a
fixed size stack of Thompson Sampling bandits.

To evaluate the effectiveness of POSTS, we formulated
a tree-based approach, called POOLTS and showed that
POOLTS is able to find optimal open-loop plans with suf-
ficient computational and memory resources.

We empirically tested POSTS in four large benchmark
problems and showed that POSTS achieves competitive
performance compared to tree-based open-loop planners
like POOLTS and POOLUCT, if sufficient resources are
provided. Unlike tree-based approaches, POSTS offers a
performance-memory tradeoff by performing best, if com-
putational and memory resources are highly restricted, mak-
ing it suitable for efficient partially observable planning.

For the future, we plan to extend POSTS to multi-agent
systems (Phan et al. 2018).

References
Agrawal, S., and Goyal, N. 2013. Further Optimal Regret
Bounds for Thompson Sampling. In Artificial Intelligence
and Statistics, 99–107.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
Time Analysis of the Multiarmed Bandit Problem. Machine
learning 47(2-3):235–256.
Bai, A.; Wu, F.; Zhang, Z.; and Chen, X. 2014. Thomp-
son Sampling based Monte-Carlo Planning in POMDPs. In
Proceedings of the Twenty-Fourth International Conferenc
on International Conference on Automated Planning and
Scheduling, 29–37. AAAI Press.
Bai, A.; Wu, F.; and Chen, X. 2013. Bayesian Mixture Mod-
elling and Inference based Thompson Sampling in Monte-
Carlo Tree Search. In Advances in Neural Information Pro-
cessing Systems, 1646–1654.
Belzner, L., and Gabor, T. 2017. Stacked Thompson Ban-
dits. In Proceedings of the 3rd International Workshop on
Software Engineering for Smart Cyber-Physical Systems,
18–21. IEEE Press.
Bubeck, S., and Munos, R. 2010. Open Loop Optimistic
Planning. In COLT, 477–489.
Chapelle, O., and Li, L. 2011. An Empirical Evaluation
of Thompson Sampling. In Advances in neural information
processing systems, 2249–2257.
Honda, J., and Takemura, A. 2014. Optimality of Thomp-
son Sampling for Gaussian Bandits depends on Priors. In
Artificial Intelligence and Statistics, 375–383.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artificial intelligence 101(1):99–134.
Kaufmann, E.; Korda, N.; and Munos, R. 2012. Thompson
Sampling: An Asymptotically Optimal Finite-Time Analy-
sis. In International Conference on Algorithmic Learning
Theory, 199–213. Springer.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In ECML, volume 6, 282–293. Springer.
Lecarpentier, E.; Infantes, G.; Lesire, C.; and Rachelson, E.
2018. Open Loop Execution of Tree-Search Algorithms. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2362–2368. IJCAI Organization.
Perez Liebana, D.; Dieskau, J.; Hunermund, M.;
Mostaghim, S.; and Lucas, S. 2015. Open Loop Search
for General Video Game Playing. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation, 337–344. ACM.
Phan, T.; Belzner, L.; Gabor, T.; and Schmid, K. 2018.
Leveraging Statistical Multi-Agent Online Planning with
Emergent Value Function Approximation. In Proceedings
of the 17th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’18, 730–738. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime Point-
based Approximations for Large POMDPs. Journal of Arti-
ficial Intelligence Research 27:335–380.

Powley, E.; Cowling, P.; and Whitehouse, D. 2017. Memory
Bounded Monte Carlo Tree Search. AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008.
Online Planning Algorithms for POMDPs. Journal of Arti-
ficial Intelligence Research 32:663–704.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Advances in neural information pro-
cessing systems, 2164–2172.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
Nature 529(7587):484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the Game of Go without Human
Knowledge. Nature 550(7676):354–359.
Smith, T., and Simmons, R. 2004. Heuristic Search Value It-
eration for POMDPs. In Proceedings of the 20th conference
on Uncertainty in artificial intelligence, 520–527. AUAI
Press.
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT:
Online POMDP Planning with Regularization. In Advances
in neural information processing systems, 1772–1780.
Thompson, W. R. 1933. On the Likelihood that One Un-
known Probability exceeds Another in View of the Evidence
of Two Samples. Biometrika 25(3/4):285–294.
Weinstein, A., and Littman, M. L. 2013. Open-loop Plan-
ning in Large-Scale Stochastic Domains. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, 1436–1442. AAAI Press.
Yu, C.; Chuang, J.; Gerkey, B.; Gordon, G.; and Ng, A.
2005. Open-Loop Plans in Multi-Robot POMDPs. Tech-
nical report, Stanford CS Dept.

