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Abstract. Recent work on learning in multi-agent systems (MAS) is
concerned with the ability of self-interested agents to learn cooperative
behavior. In many settings such as resource allocation tasks the lack of
cooperative behavior can be seen as a consequence of wrong incentives.
I.e., when agents can not freely exchange their resources then greedi-
ness is not uncooperative but only a consequence of reward maximiza-
tion. In this work, we show how the introduction of markets helps to
reduce the negative effects of individual reward maximization. To study
the emergence of trading behavior in MAS we use Deep Reinforcement
Learning (RL) where agents are self-interested, independent learners rep-
resented through Deep Q-Networks (DQNs). Specifically, we propose Ac-
tion Traders, referring to agents that can trade their atomic actions in
exchange for environmental reward. For empirical evaluation we imple-
mented action trading in the Coin Game – and find that trading signifi-
cantly increases social efficiency in terms of overall reward compared to
agents without action trading.

1 Introduction

The success of combining reinforcement learning (RL) and artificial neural net-
works (ANNs) in single agent settings has also respawned interest in multi agent
reinforcement learning (MARL) [8, 20, 9, 16]. In so called independent learning
each agent is represented by a neural network which is trained according to a
specific learning rule such as Q-learning [12]. When agents are self-interested the
emergent behavior is often suboptimal as agents learn behavior w.r.t. their indi-
vidual reward signal. In tasks such as resource allocation problems this leads to
first-come, first-served strategies. The resulting allocations from such strategies
are in general inefficient. An allocation is said to be inefficient, if there is another
allocation under which at least one agent has higher reward and all other agents
have at least equally high rewards compared to the former allocation.

While some work tries to mitigate greedy behavior based on game theoretic
strategies such as Tit-for-Tat [9] we argue that inefficiency can also be seen as a
consequence of market failure. Specifically, many settings provide no incentives
for agents to increase efficiency. I.e., as long as an agent’s best alternative in
terms of utility is being greedy then the learned behavior is rational rather than



2 Kyrill Schmid et al.

+1 +2

E = 0.5 E = 1

+1

+2

E = 1 E = 1

Fig. 1: Two agents competing for a coin: while pure self-interested behavior with-
out trading incentivizes agents to act greedily the introduction of a market can
help to increase both agents’ expected value.

uncooperative. However, individual utility maximization can originate efficiency
when agents are enabled to incentivize other agents. We call such a mechanism
a market for behavior as it enables agents to trade behavior in exchange for
other resources e.g. environmental reward. In the presence of a behavior market
a utility maximizing agent can invest to stimulate behavior.

Figure 1 illustrates how the introduction of a behavior market helps to over-
come inefficiency in a stylized scenario. Suppose two agents are competing for a
coin where agent 1 (yellow) gains a reward of +1 while agent 2 (blue) gains a
reward of +2 from gathering the coin. When there is a probability of 0.5 for both
agents to get it when they step forward then they will have an expected value
of 0.5 (agent 1) and 1 for agent 2. As each agent only considers it’s own reward
there will be no incentive for agent 1 to dedicate the coin to agent 2 while this
would maximize the overall outcome. This changes when agents are enabled to
exchange reward for behavior. When being able to trade, agent 2 could propose
agent 1 a reward +1 when agent 1 steps back. In this case, expected values are
both 1 which increases overall reward.

The main contributions of this paper are:

– A definition of action trading as a realization of a behavior market.
– Empirical evidence that the introduction of markets is sufficient in order to

increase efficiency in MAS.

The rest of this paper is organized as follows: Section 2 gives an overview
about related work. Section 3 describes the learning methods. Section 4 intro-
duces action trading. Finally, in Section 5 we evaluate action trading in two
experiments comparing self-interested agents with and without action trading in
a matrix game and the Coin Game.

2 Related Work

Independent and cooperative RL in multi-agent systems has been researched for
decades [21, 10, 14]. Recent successes of both model-free and model-based deep
RL extending classical approaches with learned abstractions of state and action
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spaces [12, 17, 19] motivated the use of deep RL also in multi-agent domains [1,
3].

The tensions of cooperation, competitiveness, self-interest and social welfare
have traditionally been researched in the framework of game theory [13]. Game
theory has also been a central theoretic tool for studying multi-agent systems
[18]. A recent line of research investigates game-theoretic considerations in multi-
agent (deep) RL settings, extending the idea of classical games into the setting
of sequential decision making under uncertainty [8, 20, 9, 16].

In particular, to bring the concept of social dilemmas closer towards real-
world problems the authors of [8] propose sequential social dilemmas (SSDs)
where cooperation and competition cannot be seen as an atomic action but are
represented through complex policies. In different experiments the authors show
how learned behavior depends on the choice of environmental factors such as
resource abundance. Through variation of these external properties the authors
train different policies and classify these as cooperative or competitive respec-
tively. In this work we adopt the idea of SSDs with multiple independent agents
each represented through deep Q-networks. Still, in our analysis we do not focus
on the emergence of cooperative policies through variation of environmental fac-
tors. Instead we were interested in answering the question whether in a system
of autonomous, self-interested agents the chance to make economical decisions
leads to efficient allocation of resources and hence increases social welfare.

In [20] the authors demonstrated how cooperative behavior emerges as a
function of the rewarding scheme in the classic video game Pong. Agents, repre-
sented by autonomous Deep Q-Networks, learned strategies representing cooper-
ation and competition respectively through modification of the reward function.
In our approach we do not specify the rewarding scheme as a static property of
the environment but rather as a changing structure through which agents can
express their willingness to cooperate.

To deal with resource allocation in MARL the authors in [11] propose re-
source abstraction where each available resource is assigned to an abstract group.
Abstract groups build the basis for new reward functions from which learning
agents receive a more informative learning signal. Whereas the building of ab-
stract resource groups and hence the shaping of rewards is done at design time,
in this work the transformation of reward schemes is part of the learning process.

An approach to carry the successful Prisoner’s Dilemma strategy tit-for-tat
into complex environments has been recently made by Lerer and Peysakhovich
[9]. In their work they construct tit-for-tat agents and show through experi-
ments and theoretically their ability to maintain cooperation while purely reac-
tive training techniques are more likely to result in socially inefficient outcomes.
The analysis of reward trading agents is more interested in emergent properties
than in implementing a fixed strategy. We therefore make no other assumption
than agents maximizing their own returns.
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3 Reinforcement Learning

For the purpose of this work we follow the line of descriptive approaches similar to
[8]. Rather than asking what learning rule agents should use we model each agent
as a specific learner and observe the emergent system behavior. In this sense we
model agents as independent learners, i.e., agents cannot observe each other but
only recognize a changing environment which is the result of the learning of
other agents. We apply methods from the framework of reinforcement learning
where it is known that indepenent learning results in non-stationarity as well as
to the violation of the Markov property [4, 7]. However, as [8] points out in the
descriptive approach this can be considered as a feature rather than a bug as it
is an aspect of the real environment that the model captures.

Reinforcement learning (RL) are methods where an agent learns a policy π
from repeated interaction with an environment. If multiple agents are involved
the problem can be described with a so called Stochastic Game (SG). Formally,
a SG is a tuple (S,N ,A, T ,R) where: S is a finite set of states, N is a finite set
of I players, A = A1 × ...×AI describes the joint-action space where Ai is the
finite action set of player i, T : S × A × S → R is the transition function and
R = r1, ..., rI where ri : S ×A → R is the reward function for player i. [4]

An agent’s goal is to maximize its expected return which isRt :=
∑∞
t=1 γ

t−1Rt.
An agent decides which actions to take in a certain state according to a policy π
which is a function π : S → P(A) from states to probability distributions over A.
Over the course of training the agent is supposed to learn a policy that maximizes
the expected return. One way to obtain a policy is to learn the action value func-
tion Q : S×A → R that gives the value of an action in a certain state. A popular
way to learn the action value function is Q-learning where an agent i updates its
values according to: Qi(s, a)← Qi(s, a)+α

[
ri+γmaxa′∈Ai Qi(s

′, a′)−Qi(s, a)
]

where α is the learning rate and γ is a discount factor. From Q a policy π can be
derived by using e.g. ε-greedy action selection where with probability 1 − ε the
agent selects an action with argmaxa∈AQ(s, a) and with probability ε the agent
selects an action random uniform from the available actions.

In this work, we model agents as independent Q-Learners. Deep RL refers
to methods that use deep neural networks as function approximators. In deep
multi-agent RL each agent can be represented by a deep Q-network (DQN) [12].
For independent learners, each agent stores a function Qi : S × Ai → R that
approximates the state-action values.

4 Action Trading

This section formally introduces action trading which is realized through extend-
ing agents’ action spaces. The idea of action trading is to let agents exchange
environmental reward for atomic actions. Learning then comprises two parts:
policies for the original action space of the stochastic game and a trading policy
that represents an agent’s trading behavior. To keep notation simple we define
action trading for the two agent case i.e., N = {1, 2}.
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For a given stochastic game (S,N ,A, T ,R), action trading is realized through
extending action spaces A1 and A2 in the following way: A′1 = A1 × (A2 ×
[0, .., N ]) and A′2 = A2×(A1× [0, .., N ]). I.e., action spaces A′i comprise the orig-
inal actions aorig ∈ Ai and also trading actions atrade ∈ Aj × [0, .., N ]. A trading
action atrade is a tuple (aij, p) that defines the amount of reward p ∈ [0, ..., N ]
that agent i is offering agent j for an action aij . p therefore is the price an agent
pays and is transferred from agent i to agent j if a trade is established.

In this work we require a successful trade to satisfy two conditions. Firstly,
agent i made an offer to agent j at time-step t for action a written as aij .
Secondly, also at time-step t agent j actually chose action a, written as aj . Thus,
a trade will only be established if offer and supply match at the same time step.
The resulting rewards at time-step t in the two agents scenario for agent 1 are
r1t = R1 + p2 ∗ δ21 − p1 ∗ δ12 and for agent 2 r2t = R2 + p1 ∗ δ12 − p2 ∗ δ21 where
Ri represents the original environmental reward and δij are boolean values to

define successful trades i,.e., δij =

{
1, if aij = aj ,

0, otherwise
.

Fig. 2: Action trading describes a mechanism to offer other agents environmental
reward in exchange for specific actions. Agents therefore choose in addition to
their original actions also trading actions. A trade is realized when an offer
matches an actual action.

Figure 2 visualizes how action trading is realized. Agents select actions from
their original action space and from the trading action space. Trading actions
describe agents’ offers towards other agents for specific actions. Whenever an
offer matches an actual performed action a trade is realized i.e., a fixed amount
of reward is transferred between the two involved agents.

5 Experiments

In this section, we describe two experiments. The first experiment is an iterated
matrix game that has been extended to enable agents to trade actions. The
second experiment is the Coin Game, which is used for studying sequential social
dilemmas in the recent literature for multi-agent learning [9, 2]. In all experiments
we compared action traders with self-interested agents.
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To measure the social outcomes of multi-agent learning, it is necessary to
define a metric as the value function cannot be used as a performance metric
like in single agent RL. To measure efficiency, we use the total sum of rewards
obtained by all agents over an episode of duration T , also called the Utilitarian

metric (U), which is defined by [15]: U = E[
∑N

i=1 R
i

T ] where Ri =
∑T
i=1 r

t
i is the

return for agent i for a sequence of rewards {rit|t = 1, ..., T} over an episode of
duration T . For the Coin Game the Utilitarian is complemented by the total
number of collected coins, and the share of correctly collected coins within one
episode.

5.1 Iterated Matrix Game

To study the effects of action trading in a simple matrix game, we used a game
with pay-offs as given in Figure 3a. Action trading in the matrix game was
realized by extending action spaces Ai = {1, 2} to Ai = {(1, 0), (1, 1), (1, 2),
(2, 0), (2, 1), (2, 2)}, i.e., each agent decides what action to take from the original
action space in combination with a trading action. The price in terms of reward is
fixed with p = 1 for all actions. As learning rule we used tabular Q-learning with
learning rate α = 0.001. For action selection we used the ε-greedy Q-Function
with ε decaying from 1.0 to 0.1 over 2500 steps.

The results from 100 runs each comprising 2500 steps are shown in Figure 3.
Independent learners without trading (blue) start to select the dominating action
(1, 1) with high probability which is reasonable as agent 2 only ever receives
reward when choosing action 1. Likewise, agent 1 learns to choose action 1 as a
best response to the selection of agent 2. In contrast, independent learners with
action trading (green) have decreasing reward for around 1000 steps. Afterwards
overall reward constantly increases.

1 2

1 0.5 / 0.5 4.0 / 0.0

2 0.0 / 1.0 1.0 / 0.0

Agent 1

Agent 2

(a) Payoffs

0 500 1000 1500 2000
Step

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
w
ar
d

trading

no-trading

(b) Overall reward

Fig. 3: 100 runs of the iterated matrix game with payoffs as given in the table
(left). Whereas non-trading agents (blue) fail to find a global optimum agents
with action trading (green) eventually learn to maximize overall and indiviudal
reward
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5.2 The Coin Game

To study the effects of action trading in a problem with sequential decision
making we adopt the Coin Game first proposed in [9]. The Coin Game is a
2-dimensional grid world that includes 2 agents (blue and yellow) and their
respective coins. The task is to collect the coins and agents get a reward of +1
for collecting coins of any color. However, whenever an agent collects a coin that
is different from its own color the other agent loses two points. To evaluate the
performance of action trading for n > 2 we also tested an extended version of
the Coin Game comprising 4 agents. The 4 agents Coin Game works in the same
way, i.e., agents have their associated coins and impose costs on a fellow agent
whenever they collect a differently colored coin.

From the perspective of this work, the Coin Game can be seen as a task where
resources (coins) need to be allocated to agents. When efficiency is measured as
overall reward then it would be best if agents only collected their own coins to
prevent imposing costs on the other agent. As a consequence agents have an
incentive to pay the other agent for not collecting their own coins. Consider the
situation, when agent 1 (yellow) is about to collect the blue coin. This will bring
agent 1 a reward of +1 and -2 for agent 2 (blue). Consequently, agent 2 would
be willing to pay a price p ≤ 3 to agent 1 in exchange for the coin.

Action spaces Ai in the Coin Game have four actions: Ai = {North,South,
East,West}. To reduce the trading options for agents at any step, we decided to
define a single tradeable action StepBack which is any action that increases the
distance between an agent and the current coin. The trading decision an agent
has to make is whether to offer another agent the fixed price p in exchange for
a StepBack action. I.e., each agent i chooses actions from: Ai ×

∏
j 6=i s

j where

Ai describes the original action space of agent i and sj = {0, 1} describes the
binary choice to trade with any other agent j.

Learning Agents in the Coin Game were represented as deep Q-Networks
(DQNs). During learning, exploration was encouraged by using a linear Boltz-
man policy, defined by: π(s) = argmaxa(Va), where Va is sampled from Va ∼

exp(qt(a)/τ)∑n
i=1 exp(qt(i)/τ)

for each a ∈ A. All agents updated their policies from a stored

batch of transitions {(s, a, ri, s′)t : t = 1, ..., T} [6]. For the Coin Game exper-
iments, the batch size was limited to 50k transitions, where older transitions
are discarded after inserting new transitions. The network was trained with
the Adam optimization algorithm with a learning rate of 1e−3 [5]. Coin Game
episodes lasted for 100 steps and after 25 episodes we logged 50 test episodes.
The discount rate γ was 0.99.

Modeling trade in the Coin Game required to set a couple of trading related
parameters. Firstly, the price p for an action a. In our experiments, we set
p = 1.25 as it exceeds an agents profit from collecting a coin and is less than the
designated owner of the coin would lose if the other agent collected the coin.

The second parameter of interest is the trading budget m i.e., the available
budget until the current coin is collected. We experimented with different bud-
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gets and chose m to be 2.5 which allowed for a maximum of 2 trades when
p = 1.25. A third critical question was whether agents should be allowed to ac-
cumulate wealth over steps or even episodes. Although this seems an interesting
aspect we decided not to let agents gather their earnings and leave the analysis
of such a setting for future work.
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Fig. 4: Coin Game results for 2 agents (upper row) and 4 agents (lower row).
Results comprise 1000 (2 agents) and 10000 (4 agents) episodes and show mean
values and confidence intervals from 80 runs for 2 agents and 10 runs for 4 agents.
Each plot shows results for agents with action trading (green) and without trad-
ing (blue). Action traders show increasing individual and overall rewards (left
column) along with an increasing share of correctly collected coins (middle col-
umn). The number of trades (third column) decreases after a steep rise during
the early learning period (best viewed in color).

Results Figure 4 shows Coin Game results for 2 agents (upper row) and 4 agents
(lower row) respectively. Experiments involve agents without trading (blue) and
trading (green) for 80 runs (2 agents) and 10 runs (4 agents) where runs last for
1000 episodes (2 agents) and 10000 episodes (4 agents). Shaded areas show .95
confidence intervals. The left column shows the overall reward and the individual
rewards in the 2 agents setting. While non-trading agents’ reward never increases,
action traders manage to increase individual and overall reward. This comes from
an increasing share of correctly collected coins (middle column). The number of
trades sharply increase during the first 200 episodes and continuously decrease
afterwards.
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6 Discussion

Action trading in the iterated matrix game outperformed pure self-fish agents.
Nevertheless, prices for actions were given at design time which renders the
question on the ability of agents to find prices on their own.

The results from the Coin Game clearly confirm that action trading effec-
tively increases social welfare, measured through overall increase of reward for
all agents. It also shows that a given number of available resources (coins) are
allocated more efficiently as the proportion of correctly collected coins also con-
stantly increases. This is the consequence of agents’ trading activity that in-
creases sharply at early learning phases and is kept at a high level afterwards.
In learning to trade, agents realize Pareto improvements and empirically con-
firm the first fundamental theorem of welfare economics according to which
competitive markets will tend towards Pareto efficiency. From the experiments
we realized that the trading budget is a critical parameter with respect to the
problem of interest which will be left for future work.

An interesting point seems the slow decrease in the number of trades. This
might be caused by an agent speculating for short-term profits by not offering
a trade in the hope that the other agent might be doing the expected action
anyway. This could cause distrust which threatens future trades.

We recognize that trading actions in MARL presumes that a trade can be
controlled, i.e., agents cannot cheat on each other by making offers which they
do not hold afterwards. While this seems like a strong assumption, it appears
less restrictive from a practical point of view. The only extension with respect
to the environment is that agents’ rewards need to include the net earnings that
where realized by their trading activity. I.e., the environment adopts the role of
an neutral auctioneer that matches supply and offer and returns the resulting
rewards for each agent.
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