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ABSTRACT
Making decisions is a great challenge in distributed autonomous
environments due to enormous state spaces and uncertainty. Many
online planning algorithms rely on statistical sampling to avoid
searching the whole state space, while still being able to make
acceptable decisions. However, planning often has to be performed
under strict computational constraints making online planning
in multi-agent systems highly limited, which could lead to poor
system performance, especially in stochastic domains.

In this paper, we propose Emergent Value function Approximation

for Distributed Environments (EVADE), an approach to integrate
global experience into multi-agent online planning in stochastic
domains to consider global effects during local planning. For this
purpose, a value function is approximated online based on the
emergent system behaviour by using methods of reinforcement
learning.

We empirically evaluated EVADEwith two statistical multi-agent
online planning algorithms in a highly complex and stochastic
smart factory environment, where multiple agents need to process
various items at a shared set of machines. Our experiments show
that EVADE can effectively improve the performance of multi-
agent online planning while offering efficiency w.r.t. the breadth
and depth of the planning process.
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1 INTRODUCTION
Decision making in complex and stochastic domains has been a
major challenge in artificial intelligence for many decades due to in-
tractable state spaces and uncertainty. Statistical approaches based
on Monte-Carlo methods have become popular for planning under
uncertainty by guiding the search for policies to more promising
regions in the search space [1, 7, 14, 24, 36, 38, 47]. These meth-
ods can be combined with online planning to adapt to unexpected
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changes in the environment by interleaving planning and execution
of actions [1, 7, 14, 36, 38].

However, online planning often has to meet strict real-time con-
straints limiting the planning process to local search. This makes
the consideration of possible global effects difficult, which could
lead to suboptimal policies, especially in stochastic domains. The
problem is further intensified in multi-agent systems (MAS), where
the search space grows exponentially w.r.t. the dimension and the
number of agents, which is known as the curse of dimensional-

ity [1, 8, 29]. Furthermore, one has to cope with the coordination
of individual actions of all agents to avoid potential conflicts or
suboptimal behaviour [8, 10].

Many multi-agent planning approaches assume the availability
of a pre-computed value function of a more simplified model of
the actual environment to consider possible global effects in the
local planning process, which can be exploited to prune the search
space or to further refine the policy [17, 31, 40, 43]. This might be
insufficient for highly complex and uncertain domains, where the
dynamics cannot be sufficiently specified beforehand [7]. Depend-
ing on the domain complexity, pre-computing such a value function
might be even computationally infeasible [8, 38]. Thus, an adaptive
and model-free approach is desirable for learning a value function
at system runtime in MAS.

Recently, approaches to combine online planning and reinforce-
ment learning (RL) have become popular to play games with high
complexity like Go and Hex [2, 36, 37]. A tree search algorithm is
used for planning, which is guided by a value function approxi-
mated with RL. These approaches were shown to outperform plain
planning and RL, even achieving super-human level performance
in Go without any prior knowledge about the game beyond its rules
[37]. So far, these approaches have only been applied to determin-
istic domains with only one agent.

In this paper, we propose Emergent Value function Approximation

for Distributed Environments (EVADE), an approach to integrate
global experience into multi-agent online planning in stochastic
domains. For this purpose, a value function is approximated online
based on the emergent system behaviour by using methods of RL.
With that value function, global effects can be considered during
local planning to improve the performance and efficiency of existing
multi-agent online planning algorithms.

We also introduce a smart factory environment, where multiple
agents need to process various items with different tasks at a shared
set of machines in an automated and self-organizing way. Given a
sufficient number of agents and stochasticity w.r.t. agent behaviour
and the outcome of actions, we show that our environment has a
significantly higher branching factor than the game of Go [36].



We empirically evaluate the effectiveness of EVADE in this sto-
chastic and complex domain based on two existing multi-agent
planning algorithms [5, 30].

The rest of the paper is organized as follows. Section 2 pro-
vides some background about decision making in general. Section
3 discusses related work. Section 4 describes EVADE for enhanc-
ing multi-agent planning algorithms. Section 5 presents and dis-
cusses experimental results achieved by two statistical multi-agent
planning algorithms enhanced with EVADE in our smart factory
environment. Finally, section 6 concludes and outlines a possible
direction for future work.

2 BACKGROUND
2.1 Markov Decision Processes
We formulate our problem as multi-agent Markov Decision Process

(MMDP) assuming a fully cooperative setting, where all agents
share the same common goal [8, 29]. For simplicity, this work only
focuses on fully observable problems as modeled in [8, 14, 44].

Although more realistic models exist for describing large-scale
MAS like Dec-MDPs or Dec-POMDPs [29], the focus of this work is
just to evaluate the possible performance and efficiency gain based
on integrating global experience into the multi-agent online plan-
ning process. An extension of our approach to partially observable
models is left for future work.

2.1.1 MDP. Decision-making problems with discrete time steps
and a single agent can be formulated as Markov Decision Process

(MDP) [8, 22, 34]. An MDP is defined by a tupleM = ⟨S,A,P,R⟩,
where S is a (finite) set of states, A is the (finite) set of actions,
P(st+1 |st ,at ) is the transition probability function and R(st ,at ) is
the scalar reward function. In this work, it is always assumed that
st , st+1 ∈ S, at ∈ A, rt = R(st ,at ), where st+1 is reached after
executing at in st at time step t . Π is the policy space and |Π | is the
number of all possible policies.

The goal is to find a policy π : S → A with π ∈ Π, which
maximizes the (discounted) return Gt at state st for a horizon h:

Gt =

h−1∑
k=0

γk · R(st+k ,at+k ) (1)

whereγ ∈ [0, 1] is the discount factor. Ifγ < 1, then present rewards
are weighted more than future rewards.

A policy π can be evaluated with a state value function V π =

Eπ [Gt |st ], which is defined by the expected return at state st [4, 8,
22]. π is optimal if V π (st ) ≥ V π ′

(st ) for all st ∈ S and all policies
π ′ ∈ Π. The optimal value function, which is the value function for
any optimal policy π∗, is denoted as V ∗ and defined by [4, 8]:

V ∗(st ) =maxat ∈A
{
rt + γ

∑
s ′∈S

P(s ′ |st ,at ) ·V
∗(s ′)

}
(2)

2.1.2 Multi-Agent MDP. An MMDP is defined by a tupleM =
⟨D,S,A,P,R⟩, where D = {1, ...,n} is a (finite) set of agents and
A = A1 × ... × An is the (finite) set of joint actions. S, P and R

are defined analogously to an MDP, given joint actions instead of
atomic actions [8].

The goal is to find a joint policy π = ⟨π1, ...,πn⟩, which maxi-
mizes the return Gt of eq. 1. πi is the individual policy of agent

i ∈ D. Given n agents in the MMDP, the number of possible joint
policies is defined by |Π | =

∏n
i=1 |Πi |. If all agents share the same

individual policy space Πi , then |Π | = |Πi |
n .

Similarly to MDPs, a value function V π can be used to evaluate
the joint policy π .

2.2 Planning
Planning searches for a policy, given a generative model M̂ , which
represents the actual environmentM . M̂ provides an approximation
for P and R of the underlying MDP or MMDP [7, 8, 47]. We assume
that M̂ perfectly models the environment such that M̂ = M . Global
planning methods search the whole state space to find π∗ or V ∗.
An example is value iteration, which computes the optimal value
function V ∗ by iteratively updating value estimates for each state
according to eq. 2 [4, 8, 22]. Local planning methods only regard
the current state and possible future states within a horizon of h to
find a local policy π

local
[7, 47]. An example for local planning is

given in fig. 1a for a problem with a branching factor of two and a
planning horizon of h = 2. The nodes in the search tree represent
states and the links represent actions.

(a) local planning (b) local planning with value function

Figure 1: Illustration of local planning with a horizon of
h = 2. The nodes in the search tree represent states and
the links represent actions. The red path represents a sam-
pled plan. The dashed gray links mark unreachable paths.
(a) plain local planning. (b) local planning with a value func-
tion to consider global effects in the unreachable subtree.

In this paper, we only focus on local planning methods for online
planning, where planning and execution of actions are performed
alternately at each time step, given a fixed computation budget
n
budget

[1, 7, 14, 36, 38].
Local planning can be performed via closed-loop or open-loop

search. Closed-loop search corresponds to a tree search, where
a search tree is constructed and traversed guided by an action
selection strategy πtree [6, 33]. The nodes of the tree represent
states and the links represent actions. The state valuesV πtree (st ) are
computed recursively according to eq. 1 starting from the leaves of
the search tree.Monte Carlo Tree Search (MCTS) is a popular closed-
loop planning approach, which is applied to very large and complex
domains [13, 24, 36–38]. MCTS can also be adapted to multi-agent
planning [1, 14]. Open-loop planning searches for action sequences
or plans of length h [6, 9, 33, 47]. These plans are typically sampled
from a sequence of distributions Φ1, ...,Φh and simulated in M̂ .
The resulting rewards are accumulated according to eq. 1 and used
to update the distributions. Open-loop planning does not store



any information about intermediate states, thus enabling efficient
planning in large-scale domains [33, 47]. An approach to open-loop
planning in MAS is proposed in [5].

2.3 Reinforcement Learning
Reinforcement Learning (RL) corresponds to a policy search for an
unknown environmentM . In general, an agent knows the state and
action space S and A but it does not know the effect of executing
at ∈ A in st ∈ S [8, 42]. Model-based RL methods learn a model
M̂ ≈ M by approximating P and R [8, 20, 42]. M̂ can be used for
planning to find a policy. In this paper, we focus onmodel-free RL to
approximate V ∗ based on experience samples et = ⟨st ,at , st+1, rt ⟩
and a parametrized function approximator V̂θ with parameters θ
without learning a model M̂ [42]. A policy π̂ can be derived by
maximizing V̂θ such that π̂ (st ) = arдmaxat ∈A (Q̂θ (st ,at )), where
Q̂θ (st ,at ) = R(st ,at ) + γ

∑
st+1∈S P(st+1 |st ,at )V̂θ (st+1) is the ap-

proximated action value function [8, 42]. The experience samples are
obtained from interaction between the agent and the environment.

3 RELATEDWORK
Online Planning with Evaluation Heuristics. Some work on online

planning in partially observable domains provide an evaluation
heuristic to compensate for highly limited planning horizons [16,
32, 35, 39]. Those heuristics are usually based on domain knowledge
or computed in an offline phase, where a value function VMDP
is constructed based on a fully observable model of the actual
environment by using variants of value iteration. VMDP can be
used to enhance online planning to search for a policy under the
consideration of possible global effects. It was shown that VMDP
provides an upper bound to V ∗ of the actual environment [11, 31].

This can be exploited to prune the search space without loos-
ing optimality of the solutions found. Many multi-agent planning
algorithms use similar methods to enhance planning with such a
pre-computed value function VMDP [17, 31, 40, 43].

In our approach, V ∗ is approximated online based on actual

experience without requiring a model. A generative model is only
used for online planning to find a joint policy. We intend to apply
our approach to highly complex and stochastic domains, where an
offline computation is not feasible, since any change in the model
would require the re-computation of VMDP .

Online Planning and Deep RL. AlphaGo is a program introduced
in [36], which is able to play Go at a super-human level. It recently
defeated the currently best human Go players in various tourna-
ments [36, 37]. AlphaGo uses MCTS for online planning and deep
neural networks, which approximate π∗ and V ∗ to guide the tree
search. With this approach, AlphaGo is able to develop extremely
complex strategies within given time constraints.

MCTS-based planning combined with an approximation of V ∗

was shown to improve the performance of plain online planning or
RL in complex and deterministic games like Go and Hex [2, 36, 37].
The idea of these approaches is based on the human mind, which
is able to think ahead into the future, while guiding the thoughts
with intuition learned from experience. In the context of artificial
intelligence, online planning represents the future thinking, while
deep RL represents the integration of strong intuition [2, 18, 23].

Our approach extends these ideas to environments withmultiple

agents. We also focus on stochastic domains, where the outcome of
actions and the behaviour of agents are not deterministic.

Distributed Value Function Approximation. In this paper, we focus
on centralized learning of V ∗, where all agents share the same
parameters θ similarly to [19, 45]. Unlike previous work on multi-
agent RL, we do not use the approximated value function to directly
derive a policy. Instead, we use it to guide online planning in MAS.

Besides, there exist approaches to approximate the value function
asynchronously and in parallel [25, 28]. In that case, multiple agents
act independently of each other in different instances of the same
domain. They share experience with each other in order to update
the same value function approximation V̂θ in parallel to accelerate
the learning process.

Our approach approximates V ∗ based on the global experience
of multiple agents, which act in the same environment. Our approx-
imation V̂θ is not meant to improve the performance of individual
agents but to improve the behaviour of the MAS as a whole.

4 EVADE
We now describe Emergent Value function Approximation for Dis-

tributed Environments (EVADE) for leveraging statistical multi-agent
online planningwith a value function, which is approximated online
at system runtime. EVADE is a framework for combining multi-
agent online planning and RL to further improve the performance
in MAS.

4.1 Combining Online Planning and RL
Given a perfect generative model M̂ = M , online planning can
be used for decision making with high quality and accuracy w.r.t.
the expected return. However, due to computational constraints,
online planning is unable to make lookaheads for arbitrarily long
horizons, which would be required for highly complex tasks that
require much more time steps to solve than the actually feasible
horizon as sketched in fig. 1a. In contrast, model-free RL with
a parametrized function approximator V̂θ allows for potentially
infinite future prediction but has approximation erros due to the
compressing nature of V̂θ .

By combining online planning and RL, a decision maker can
benefit from both advantages [2, 35–37]. The limited lookahead of
planning can be enhanced with V̂θ as shown in fig. 1b. Online plan-
ning can plan accurately for h initial time steps, which are weighted
more than the outcome estimate V̂θ (st+h ), given a discount factor of
γ < 1. The discount can also neglect possible approximation errors
of V̂θ . Especially in highly complex and stochastic domains with
multiple agents, we believe that the integration of a value function
approximation could improve the performance of otherwise limited
multi-agent online planning.

4.2 Multi-Agent Planning with Experience
We focus on online settings, where there is an alternating planning

and learning step for each time step t . In the planning step, the
system searches for a joint policy π

local
, which maximizesGt,EVADE:

Gt,EVADE = Gt + γ
hV̂θ (st+h ) (3)



Gt,EVADE extendsGt from eq. 1 with V̂θ (st+h ) as the provided global
outcome estimate to enhance local planning with a limited horizon
of h as sketched in fig. 1b. The planning step can be implemented
with an arbitrary multi-agent planning algorithm, depending on
the concrete problem.

After the planning step, all agents execute the joint action at =
π
local

(st ) causing a state transition from st to st+1 with a reward
signal rt . This emergent result is stored as experience sample et =
⟨st ,at , st+1, rt ⟩ in an experience bufferD. A sequence of experience
samples e1, ..., eT is called episode of length T .

In the subsequent learning step, a parametrized function approx-
imator V̂θ is used to minimize the one-step temporal difference (TD)
error of all samples et in D w.r.t. θ . The TD error for et is defined
by [41, 42]:

δt = V̂θ (st ) − (rt + γV̂θ (st+1)) (4)
It should be noted that the approximation only depends on the
experience samples et ∈ D and does not require a model like hybrid
planning approaches explained in section 3. The updated value
function V̂θ can then be used for the next planning step at t + 1.

The complete formulation of multi-agent online planning with
EVADE is given in algorithm 1, whereT is the length of an episode,
M̂ is the generative model used for planning, n is the number of
agents in the MAS, h is the planning horizon, n

budget
is the com-

putation budget and V̂θ is the value function approximator. The
parameterMASPlan can be an arbitrary multi-agent planning al-
gorithm for searching a joint policy π

local
by maximizingGt,EVADE.

Given that the computation budget n
budget

is fixed and the time
to update V̂θ at each time step is constant1, EVADE is suitable for
online planning and learning in real-time MAS.

Algorithm 1Multi-agent online planning with EVADE

1: procedure EVADE(MASPlan, M̂,n,h,nbudget, V̂θ )
2: Initialize θ of V̂θ
3: Observe s1
4: for t = 1,T do
5: Find π

local
usingMASPlan(st , M̂,n,h,nbudget, V̂θ )

6: Execute at = π
local

(st )
7: Observe reward rt and new state st+1
8: Store new experience et = ⟨st ,at , st+1, rt ⟩ in D
9: Refine θ to minimize the TD error δt for all et ∈ D

4.3 Architecture
We focus on centralized learning, since we believe thatV ∗ can be ap-
proximated faster if all agents share the same parameters θ [19, 45].
Online planning can be performed in a centralized or decentralized
way by using a concrete MAS planning algorithm. In both cases,
each planner uses the common value function approximation V̂θ to
search for π

local
by maximizingGt,EVADE. A conceptual overview

of the EVADE architecture is shown in fig. 2. Completely decentral-
ized architectures, where all agents plan and learn independently
of each other, are not considered here and left for future work.

1In practice, θ is updated w.r.t. experience batches of constant size, which are sampled
from D [26, 27].

(a) Centralized planning (b) Decentralized planning

Figure 2: Illustration of the possible MAS planning architec-
tures for EVADE. The planners get global feedback from a
value function, which is approximated in a centralized way.
The red dashed arrow between the planners in fig. 2b repre-
sents a coordinationmechanism for decentralized planning.

Decentralized planning approaches require an explicit coordina-
tion mechanism to avoid convergence to suboptimal joint policies
as shown in fig. 2b and in [8, 10]. This could be done by using a
consensus mechanism to synchronize on time or on a common seed
value to generate the same random numbers when sampling plans
[17]. Agents could also exchange observations, experience, plans
or policies via communication [45, 48]. Another way is to predict

other agents’ actions by using a policy function similarly to [36] or
by maintaining a belief about other agents’ behaviour [10, 29].

5 EXPERIMENTS
5.1 Evaluation Environment

5.1.1 Description. We implemented a smart factory environ-
ment to evaluate multi-agent online planning with EVADE. Our
smart factory consists of a 5 × 5 grid of machines with 15 different
machine types as shown in fig. 3a. Each item is carried by one agent i
and needs to get processed at various machines according to its ran-
domly assigned processing tasks tasksi = [{ai,1,bi,1}, {ai,2,bi,2}],
where each task ai, j ,bi, j is contained in a bucket. While tasks in
the same bucket can be processed in any order, buckets themselves
have to be processed in a specific order. Fig. 3b shows an example
for an agent i with tasksi = [{9, 12}, {3, 10}]. It first needs to get
processed by the machines marked as green pentagons before going
to the machines marked as blue rectangles. Note that i can choose
between two different machines for processing its requests ai,1 = 9
and ai,2 = 3, which are rendered as light green pentagons or light
blue rectangles. In the presence of multiple agents, coordination is
required to choose an appropriate machine to avoid conflicts.

All agents have a random initial position and can move along
the machine grid or enqueue at their current position represented
by a machine. Each machine can process exactly one item per time
step with a cost of 0.25 but fails with a probability of 0.1 to do so.
Enqueued agents are unable to perform any actions. If a task is
processed, it is removed from its bucket. If a bucket is empty, it is
removed from the item’s tasks list. An item is complete if its tasks
list is empty. The goal is to complete as many items as possible
within 50 time steps, while avoiding any conflicts or enqueuing at
wrong machines.



(a) machine grid (b) an agent and its tasks

Figure 3: Illustration of the smart factory setup used in the
experiments. (a) the 5 × 5 grid of machines. The numbers in
each grid cell denote the machine type. (b) an agent i (red
circle) in the factory with tasksi = [{9, 12}, {3, 10}]. It should
get processed at the green pentagonal machines first before
going to the blue rectangular machines.

5.1.2 MMDP Formulation. The smart factory environment can
be modeled as MMDP M = ⟨D,S,A,P,R⟩. D is the set of n
agents with Dactive ∩ D

complete
= ∅ and D = Dactive ∪ D

complete
.

Dactive is the set of agents with incomplete items and D
complete

is
the set of agents with complete items. S is a set of system states
described by the individual state variables of all agents, items and
machines. A is the set of joint actions. Each agent i ∈ D has the
same individual action space Ai enabling it to move north, south,
west or east, to enqueue at its current machine m = posi or to
do nothing. Any attempt to move across the grid boundaries is
treated the same as "do nothing". P is the transition probability
function. R is the scalar reward function. R at time step t is defined
by R(st ,at ) = scoret+1 − scoret , where scoret is the immediate
evaluation function for the system state:

scoret = |D
complete

| − taskst − costt − tpent (5)

where taskst =
∑
i ∈Dactive

∑
c ∈tasksi

|c | is the total number of
currently unprocessed tasks, costt is the total sum of processing
costs for each machine after processing an enqueued item and
tpent = tpent−1 +

∑
i ∈Dactive

penalty is the total sum of time pe-
nalities with penalty = 0.1 for all incomplete items at time step t .
Processing tasks and completing items increases scoret . Otherwise,
scoret decreases for each incomplete item or enqueuing at a wrong
machine.

5.1.3 Complexity. Depending on the number of agents n, the
number of possible joint actions is |A| = |Ai |

n = 6n . The ma-
chine failure probability of 0.1 increases the branching factor of the
problem even more. Given a planning horizon of h, the number of
possible joint plans is defined by:

|π
local

| = |Πlocal,i |
n = (|Ai |

h )n = |Ai |
h ·n = 6h ·n (6)

We tested EVADE in settings with 4 and 8 agents. In the 4-agent
case, there exist 64 ≈ 1300 possible joint actions. In the 8-agent case,
there exist 68 ≈ 1.68 · 106 possible joint actions. In our stochastic
smart factory setup, where machines can fail with a probability
of 0.1 and where agents are not acting in a deterministic way, the

environment has a significantly higher branching factor than the
game of Go, which has a branching factor of 250 [36].

5.2 Methods
5.2.1 Online Open-Loop Planning. Due to the stochasticity and

high complexity of our environment, we focus on open-loop plan-
ning becausewe think that current state-of-the-art algorithms based
on closed-loop planning would not scale very well in our case
[1, 33]2. Also, we do not aim for optimal planning, since our goal is
to enhance existing local planning algorithms, which might even
perform suboptimal in the first place.

The individual policy πi for each agent i is implemented as a stack
or sequence of multi-armed bandits (MAB) of length h as proposed
in [6]. Each MAB Φt = P(at |Dat ) represents a distribution, where
Dat is a buffer of size 10 for storing local returns, which are observed
when selecting arm at ∈ A. Each buffer Dat is implemented in a
sliding window fashion to consider only most recent observations
to adapt to the non-stationary joint behaviour of all agents during
the planning step.

Thompson Sampling is implemented as concrete MAB algorithm
because of its effectiveness and robustness for making decisions
under uncertainty [6, 12, 46]. The implementation is adopted from
[3, 21], where the return values in Dat for each arm at are assumed
to be normally distributed.

To optimize πi , a plan ofh actions is sampled from theMAB stack.
The plan is evaluated in a simulation by using a generative model M̂ .
The resulting rewards are accumulated to local returns according
to eq. 3 and used to update the corresponding MABs of the MAB
stack. This procedure is repeated ⌊

nbudget

h ⌋ times. Afterwards, the
action at = arдmaxa1∈A {Da1 } is selected from the MAB Φ1 for
execution in the actual environment, where Da1 is the mean of all
local returns currently stored in Da1 .

5.2.2 Multi-Agent Planning. We implemented two multi-agent
planning algorithms to evaluate the performance achieved by using
EVADE. All algorithms enhanced with EVADE were compared with
their non-enhanced counterparts w.r.t. performance and efficiency.

Direct Cross Entropy (DICE) method for policy search in distributed

models. DICE is a centralized planning algorithm proposed in [30]
and uses stochastic optimization to search joint policies, which are
optimal or close to optimal. In DICE a multivariate distribution
fξ (π ) =

∏n
i=1 fξi (πi ) is maintained to sample candidate joint poli-

cies π . These candidates are evaluated in a simulation with a global
model M̂ . The Nb best candidates are used to update fξ . This pro-
cedure is repeated until convergence is reached or n

budget
has run

out. Our implementation of DICE uses n MAB stacks representing
fξ (π ) to sample joint plans of length h, which are simulated in M̂ .
The resulting local returns are used to update all MAB stacks.

Distributed Online Open-Loop Planning (DOOLP). DOOLP is a
decentralized version of DICE proposed in [5], where each agent
is controlled by an individual planner with an individual model
M̂i = M̂ for simulation-based planning. At every time step each
agent i iteratively optimizes its policy πi by first sampling a plan
2We conducted experiments with MCTS on a joint action MDP formulation of our
problem but always ran out of memory due to the large branching factor of our settings
and the enormous size of the constructed search tree.



and then querying the sampled plans of its neighbours to construct
a joint plan. The joint plan is simulated in M̂i and the simulation
result is used to update the individual policy πi of agent i . The
individual MAB stacks are assumed to be private for each agent i .
Due to the stochasticity of the environment described in section
1 and 5.1, the planners can have different simulation outcomes
leading to different updates to the individual MAB stacks.

As a decentralized approach, DOOLP requires an explicit coordi-
nation mechanism to avoid suboptimal joint policies (see section 4.3
and fig. 2b). We implemented a communication-based coordination
mechanism, where each planner communicates its sampled plans
to all other planners, while keeping its actual MAB stack private.

5.2.3 Value Function Approximation. We used a deep convolu-
tional neural network as V̂θ to approximate the value function V ∗.
The weights of the neural network are denoted as θ . V̂θ was trained
with TD learning by using methods of deep RL [26, 27]. An experi-
ence buffer D was implemented to uniformly sample minibatches
to perform stochastic gradient descent on. D was initialized with
5000 experience samples generated from running smart factory
episodes using multi-agent planning without EVADE.

An additional target network V̂θ− was used to generate TD re-
gression targets for V̂θ (see eq. 4) to stabilize the training [27]. All
hyperparameters used for training V̂θ are listed in table 1.

hyperparameter value
update rule for optimization ADAM
learning rate 0.001
discount factor γ 0.95
minibatch size 64
replay memory size 10000
target network update frequency C 5000

Table 1: Hyperparameters for the value network V̂θ .

The factory state is encoded as a stack of 5 × 5 feature planes,
where each plane represents the spatial distribution of machines
or agents w.r.t. some aspect. An informal description of all feature
planes is given in table 2.

The input to V̂θ is a 5 × 5 × 35 matrix stack consisting of 35
matrices. The first hidden layer convolves 128 filters of size 5 × 5
with stride 1. The next three hidden layer convolve 128 filters of
size 3×3with stride 1. The fifth hidden layer convolves one filter of
size 1 × 1 with stride 1. The sixth hidden layer is a fully connected
layer with 256 units. The output layer is a fully connected with
a single linear unit. All hidden layers use exponential linear unit
(ELU) activation as proposed in [15]. The architecture of V̂θ was
inspired by the value network of [36].

5.3 Results
Various experiments with 4- and 8-agent settings were conducted to
study the effectiveness and efficiency achieved by the multi-agent
online planning algorithms from section 5.2.2 with EVADE.

An episode is reset after T = 50 time steps or when all items are
complete such that Dactive = ∅. A run consists of 300 episodes and
is repeated 100 times. Multi-agent online planning with EVADE
searches for a joint policy π

local
by maximizing Gt,EVADE with a

value function approximation V̂θ (see eq. 3). All baselines perform
planning without EVADE by maximizing Gt instead (see eq. 1).

The performance of multi-agent online planning is evaluated
with the value of score50 at the end of each episode (see eq. 5) and
the item completion rate R

completion
=

|Dcomplete |

|D |
at the end of the

300th episode, with 0 ≤ R
completion

≤ 1. If all items are complete
within 50 time steps, then R

completion
= 1. If no item is complete

within 50 time steps, then R
completion

= 0. All baselines were run
500 times to determine the average of score50 and Rcompletion

.

5.3.1 Efficiency w.r.t. Computation Budget. The effect of EVADE
w.r.t. the breadth of the policy search was evaluated. The experi-
ments for each algorithm were run with different budgets n

budget
∈

{192, 384, 512}3 and a fixed horizon of h = 4. The baselines repre-
sented by the corresponding non-enhanced planning algorithms
had a computation budget of n

budget
= 512.

Fig. 4 shows the average progress of score50. In all cases, the
EVADE enhanced versions outperform their corresponding base-
lines. There is a relatively large performance gain in the first hun-
dred episodes. The average score increases slowly afterwards or
stagnates as shown in the 8-agent case in fig. 4c and 4d. There
are no significant differences between the enhanced versions with
n
budget

∈ {384, 512}. Planning with a budget of n
budget

= 192 leads
to worse performance than the corresponding enhanced variants
with a larger budget.

(a) DICE (4 agents) (b) DOOLP (4 agents)

(c) DICE (8 agents) (d) DOOLP (8 agents)

Figure 4: Average progress of score50 of 100 runs shown as
running mean over 5 episodes for different computation
budgets nbudget ∈ {192, 384, 512} and a horizon of h = 4.
All baselines have a computation budget of nbudget = 512.
Shaded areas show the 95% confidence interval.

3We also experimented with nbudget = 256 but there was no significant difference to
planning with nbudget = 384.



Table 2: Description of all feature planes as input for V̂θ .

Feature # Planes Description
Machine type 1 The type of each machine as a value between 0 and 14 (see fig. 3a)
Agent state 4 The number of agents standing at machines whose types are (not) contained in their

current tasks and whether they are enqueued or not.
Tasks (1st bucket) 15 Spatial distribution of agents containing a particular machine type in their first bucket

of tasks for each available machine type.
Tasks (2nd bucket) 15 Same as "Tasks (1st bucket)" but for the second bucket of tasks.

The average completion rates R
completion

at the end of the 300th
episode of all experiments are listed in table 3. In the 4-agent case,
the completion rates of the baselines are about 63%, while the
rates achieved by the EVADE enhanced versions range from 86
to 92%. In the 8-agent case, the completion rates of the baslines
are about 54%, while the rates achieved by the EVADE enhanced
versions range from 65 to 78%. EVADE enhanced planning with
n
budget

∈ {384, 512} always tends to achieve a higher completion
rate than using a budget of n

budget
= 192.

5.3.2 Efficiency w.r.t. Horizon. Next the effect of EVADE w.r.t.
the depth of the policy search was evaluated. The experiments
for each algorithm were run with different horizon lengths h ∈

{2, 4, 6} and a fixed computation budget of n
budget

= 384. The
baselines represented by the corresponding non-enhanced planning
algorithms had a horizon of h = 6.

The planning horizon h influences the reachability of machines
in each simulation step as shown in fig. 5. In this example, the agent
can only reach about one fifth of the grid when planning with h = 2
(see fig. 5b), while it can theoretically reach almost any machine
when planning with h = 6 (see fig. 5d).

Fig. 6 shows the average progress of score50. Planning with a
horizon of h = 2 always had the worst initial average performance
but the largest performance gain in the first hundred episodes,
while planning with a horizon of h = 6 had the best initial average
performance but the smallest performance gain. In the 8-agent case,
planning with EVADE and a horizon of h = 2 even outperforms the
planning variants with a longer horizon after about one hundred
episodes as shown in fig. 6c and 6d. This phenomenon will be
discussed in the next section.

The average completion rates R
completion

at the end of the 300th
episode of all experiments are listed in table 4. In the 4-agent case,
the completion rate of the baselines are about 70%, while the rate
achieved by the EVADE enhanced versions range from about 82
to 92%. In the 8-agent case, the completion rates of the baslines
are about 59%, while the rate achieved by the EVADE enhanced
versions range from about 66 to 77%. Increasing the horizon from 2
to 6 in the 4-agent case tends to slightly increase R

completion
, while

in the 8-agent case it leads to a decrease of R
completion

.

5.4 Discussion
Our experiments show that statistical multi-agent online planning
can be effectively improved with EVADE, even when using a smaller
computation budget n

budget
than planning without any value func-

tion. However, n
budget

must not be too small, since statistical online
planning algorithms always require a minimum of computation to

(a) an agent and its tasks (b) horizon of h = 2

(c) horizon of h = 4 (d) horizon of h = 6

Figure 5: Reachability of machines for an agent (red circle)
in a simulation step depending on the planning horizon h.
Gray grid cellsmarkunreachablemachines. (a) The example
from fig. 3b. (b), (c) and (d) Reachable machines within the
dashed red boundaries, given resp. horizons of h.

reach promising states with higher probability. This is shown in
the experimental settings with n

budget
= 192 in fig. 4 and table 3.

In the smart factory environment, planning with a sufficient
horizon length is crucial to find joint policies with high quality as
shown in fig. 5 and table 3 and 4 regarding the performance of the
baselines. If a needed machine is unreachable in the simulation, it
cannot be considered in the local planning process, thus possibly
leading to poor solutions. In our experiments, the value function
approximation could improve multi-agent planning with horizons
which were too short to consider the entire factory.

If the discount factor is γ < 1, then the value function influences
planning with short horizons more than planning with a long hori-
zon (see eq. 3). In our experiments, planning with a horizon of h = 2
was able to keep up with planning variants with a longer horizon,
even outperforming them in the 8-agent case, given an equal com-
putation budget of n

budget
= 384. These are strong indications that



Table 3: Average rate of complete items Rcompletion at the end of the 300th episode of all experiments within a 95% confidence
interval. Planning was performed with different computation budgets nbudget and a horizon of h = 4.

algorithm (# agents) baseline
(n
budget

= 512)
EVADE

(n
budget

= 192)
EVADE

(n
budget

= 384)
EVADE

(n
budget

= 512)
DICE (4 agents) 62.5 ± 2.1% 86.8 ± 3.6% 89.3 ± 3.0% 91.8 ± 3.0%
DOOLP (4 agents) 63.7 ± 2.1% 88.5 ± 3.0% 91.3 ± 2.9% 91.0 ± 3.4%
DICE (8 agents) 55.2 ± 1.5% 65.0 ± 3.4% 73.1 ± 3.3% 77.5 ± 3.2%
DOOLP (8 agents) 53.9 ± 1.4% 65.8 ± 3.7% 72.8 ± 3.6% 73.0 ± 3.5%

Table 4: Average rate of complete items Rcompletion at the end of the 300th episode of all experiments within a 95% confidence
interval. Planning was performed with different horizons h and a computation budget of nbudget = 384.

algorithm (# agents) baseline (h = 6) EVADE (h = 2) EVADE (h = 4) EVADE (h = 6)
DICE (4 agents) 69.7 ± 2.0% 87.0 ± 3.2% 89.3 ± 3.0% 90.8 ± 3.2%
DOOLP (4 agents) 71.6 ± 2.0% 82.3 ± 4.0% 91.3 ± 2.9% 88.5 ± 3.4%
DICE (8 agents) 58.3 ± 1.5% 77.0 ± 3.8% 73.1 ± 3.3% 66.1 ± 3.1%
DOOLP (8 agents) 60.0 ± 1.5% 72.9 ± 3.5% 72.8 ± 3.6% 67.6 ± 2.9%

(a) DICE (4 agents) (b) DOOLP (4 agents)

(c) DICE (8 agents) (d) DOOLP (8 agents)

Figure 6: Average progress of score50 of 100 runs shown as
running mean over 5 episodes for different horizons h ∈

{2, 4, 6} and a computation budget of nbudget = 384. All base-
lines have a horizon of h = 6. Shaded areas show the 95%
confidence interval.

our approach offers planning efficiency w.r.t. the breadth and the
depth of the policy search after a sufficient learning phase.

The performance stagnation in the 8-agent case after hundred
episodes can be explained with the enormous policy space to be
searched and the relatively small computation budget n

budget
. This

also explains the rather poor performance of online planning with a
horizon of h = 6 compared to variants with h = 2 or h = 4 as shown
in fig. 6c and 6d. Given n

budget
= 384, the former only performs

⌊
nbudget

h ⌋ = 64 simulations per time step, while searching a much
larger policy space (|π

local
| > 1037) than the latter (|π

local
| < 1025)

according to eq. 6. When using the value function approximation
V̂θ , more simulations should lead to high quality results with a
higher accuracy. Thus, a larger performance gain can be expected
when increasing n

budget
.

6 CONCLUSION & FUTUREWORK
In this paper, we presented EVADE, an approach to effectively im-
prove the performance of statistical multi-agent online planning
in stochastic domains by integrating global experience. For this
purpose, a value function is approximated online based on the
emergent system behaviour by using model-free RL. By consider-
ing global outcome estimates with that value function during the
planning step, multi-agent online planning with EVADE is able to
overcome the limitation of local planning as sketched in fig. 1.

We also introduced a smart factory environment, where multiple
agents need to process various items with different tasks at a shared
set of machines in an automated and self-organizing way. Unlike
domains used in [2, 36, 37], our environment can have multiple
agents, is stochastic and has a higher branching factor, given a
sufficient number of agents.

EVADEwas successfully testedwith two existing statistical multi-
agent planning algorithms in this highly complex and stochastic
domain. EVADE offers planning efficiency w.r.t. the depth and the
breadth of the joint policy search requiring less computational
effort to find solutions with higher quality compared to multi-agent
planning without any value function.

For now, EVADE has only been applied to fully observable set-
tings. Decentralized partially observable problems can often be
decomposed into smaller subproblems, which are fully observable
themselves. This is common in distributed environments, where
agents can sense and communicate with all neighbours within their
range. EVADE could be directly applied to those subproblems. As
a possible direction for future work, EVADE could be extended to
partially observable domains without any problem decomposition.
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